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Statistics may be defined as “a body of methods for

making wise decisions in the face of uncertainty.”

(Wilson Allen Wallis)

1
Introduction

Motivated by the recent developments in adaptive and flexible designs methodology, we

propose new methods for oncological phase II designs with the option to redesign aspects

of the trial in a flexible manner. Before we describe our proposed design and investigate

its characteristics, we introduce the context.

1.1. Development of new therapies and role of phase II

trials

Clinical trials in the development of new therapies are divided into four different phases

(ICH Topic E 8, 1998). Following pre-clinical research, phase I trials are usually the first

studies in which a new drug or therapy is tested in human subjects. Their aim is to assess

the toxicity (pharmacovigilance), tolerability, pharmacokinetics and pharmacodynamics of

the new drug. In contrast to phase I studies, where healthy people are normally recruited,

the primary objective of phase II studies is to explore the therapeutic efficacy in the

targeted patient group. Once safety and anti-disease activity have been demonstrated,

large-scale phase III studies are conducted to confirm how effective the treatment is. Phase

III studies are usually designed as randomized controlled trials (RCT) comparing the new

treatment with the current standard treatment or a placebo. Once effectiveness has been

demonstrated in phase III studies, it is possible to obtain approval for market release from

the appropriate regulatory agencies, such as the US Food and Drug Administration (FDA)

or the European Medicines Agency (EMA). Phase IV trials are post-approval studies and

are sometimes referred to as post-marketing surveillance trials. They are designed to
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detect drug-drug interactions, rare adverse events and side-effects of the approved drug.

Phase II designs play a key role within the clinical development process. Their main

objective is to provide the information required for the decision to progress to a phase III

trial or to halt the development of the therapy. The consequences of a wrong decision may

be far-reaching: Ending the clinical evaluation of an effective therapy implies that future

patients will be deprived of a valuable therapeutic option. On the other hand, continuing

the development of an ineffective drug leads to a significant binding of resources. The costs

of phase III studies usually amount to several million euros and hundreds of patients are

treated. Additionally, the use of an ineffective therapy would expose the patient collective

to unnecessary risks during the course of the phase III study. According to the FDA, only

between 5% and 8% of all products investigated in phase I go on to receive a license for

commercial use (FDA, 2004; Adjei et al., 2009). Due to the key role of phase II designs,

there is an urgent need for adequate and well-designed phase II trials.

This thesis focuses on oncology trials in early phase II with a binary primary endpoint,

e.g., tumor response. In this setting, there is an ongoing debate on the relative merits of

single-arm versus randomized phase II trials (see, for example, Gan et al., 2010; Stewart,

2010). Single-arm trials are recommended if limited numbers of patients are available for

recruitment or if a single-agent therapy is to be tested in pretreated patients. Randomized

trials should be used in the case of inadequate historical data or if evaluation of clinical

response is difficult or highly sensitive to clinical, pathologic or molecular parameters.

Randomized phase II oncology studies are, however, still the exception (Stone et al.,

2007). Therefore, single-arm phase II trials remain an essential tool in cancer research

(Gan et al., 2010).

1.2. Aims and structure of the thesis

The designs for single-arm phase II oncology trials presented in the literature do not permit

the flexibility desired in conducting clinical trials. Let us consider the clinical evaluation

of a single-agent therapy, conducted according to some single-arm phase II design. The

complete layout of the trial has to be specified in detail a priori and adhered to strictly

during the course of the study. Especially in early drug development, there is usually a

considerable extent of uncertainty in the planning stage of a clinical trial. It may become

apparent during the trial that the initial assumptions do not hold true. For example,

data of a parallel trial may indicate that the efficacy of the new therapy is higher than

anticipated (or lower but still clinically relevant). In this situation, the initially planned

design is inadequate and modification would be appropriate. In phase II designs to date,

however, the study still has to be conducted and evaluated according to the initially
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specified rules. As another example, data on patients treated may continue to accumulate

for some time after the criterion for ending the study is fulfilled. This can occur for various

reasons. In multicenter clinical trials, for example, it may be difficult to exactly time the

end of recruitment. This phenomenon is generally known as overrunning. On the other

hand, safety considerations or insufficient recruitment may force the trial to end before

the stopping criterion has been fulfilled. This is called underrunning. In both situations,

the procedure for proper inference is unclear.

The aim of the present work is to develop and evaluate methods that allow flexibility in

the setting of single-arm phase II study designs in oncology. Before proceeding to present

our proposed method and evaluate our findings, we give in Chapter 2 some background

information on the complex of themes that will be covered. We start with an overview of

phase II trials in oncology in Section 2.1 and present standard designs that are frequently

used in this setting. In Section 2.2, we introduce existing design methods that allow

flexibility in the course of a trial. The methods developed to date are oriented towards

controlled trials and continuous outcomes; application to discrete test statistics, as in

oncological phase II trials, has not been investigated so far.

In Chapter 3, we show that direct application of flexible methods to oncological phase II

designs will lead to inflation of the type I error rate or to conservative methods. Strict

control of the specified type I error rate is a desirable property of study design and is

especially important when these trials play a major role in the approval process of new

therapies. Approval of a new oncological drug is sometimes based solely on phase II

results (Gan et al., 2010; Tsimberidou et al., 2009). In a regulated environment strict

control of the type I error rate is mandatory (Committee for Medicinal Products for

Human Use, 2007; ICH Topic E 9, 1998). In fact, from 1973 through 2006, 46% (31/68)

of investigational anti-cancer drugs were approved without randomized trials that used

a comparator (Tsimberidou et al., 2009). Furthermore, approvals by the FDA for solid

tumors from 1998 through 2008 were based solely on single-arm phase II data in 13%

(4/34) of indications for cytotoxic drugs and in 15% (4/26) of indications for targeted

drugs (Gan et al., 2010).

In Chapters 4 and 5 we present in detail the approach we developed to achieve the goal of

flexible phase II oncology trials with control of the type I error rate. Designs are developed

for the setting of a fixed second-stage sample size (Chapter 4) and for the situation that

already in the planning phase the second-stage sample size may depend on the interim

outcome (Chapter 5). For each case, an algorithm is provided to construct the proposed

phase II designs.

The performance of the resulting designs is investigated in Chapter 6, where we also

analyze the profile of different recalculation strategies and describe their properties. Ap-
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plication of the proposed method is demonstrated in Chapter 7 with the example of a

clinical trial conducted by Combs et al. (2012) that uses the methodology described in

this thesis. We close with a discussion of the findings in Chapter 8.

This work is based on the articles Englert and Kieser (2012a), Englert and Kieser (2012b),

Englert and Kieser (2013a), and Englert and Kieser (2013b).



To understand God’s thoughts we must study statis-

tics, for these are the measure of His purpose.

(Florence Nightingale)

2
Background

2.1. Phase II trials in oncology

It is the aim of clinical phase II trials in oncology to determine whether a new agent or

combination of agents has sufficient anti-tumor activity to merit further investigation in

larger patient groups. In contrast with phase II designs in other medical fields, these trials

are usually not performed in a controlled design but as single-arm studies. Treatment per-

formance is evaluated according to the RECIST (Response Evaluation Criteria In Solid

Tumors) guidelines (Therasse et al., 2000; Eisenhauer et al., 2009). The primary endpoint

is a binary response variable indicating treatment success. In these trials, the null hy-

pothesis that the response rate π is lower than a pre-specified uninteresting response rate

π0 is tested. Since a new therapy will only be investigated further if the response rate is

higher than π0, a one-sided test is performed. To formalize the statistical approach, the

following null and alternative hypothesis can be defined:

H0 : π ≤ π0 vs. H1 : π > π0.

The study is usually powered to reject the null hypothesis for a response rate π1 (π1 > π0)

that indicates sufficient efficacy.

In the following, we only consider designs for the simple null hypothesis H0 : π = π0 and

powered for the simple alternative H1 : π = π1. Such tests are appropriate for testing

the composite null hypothesis H0 : π ≤ π0 versus the composite alternative hypothesis

H1 : π ≥ π1, as the power function is monotone in π (Chang et al., 1987). For convenience,

and adhering to the usual formulation in oncological phase II trials, the hypotheses tested



6 Chapter 2. Background

Evaluation of responses of n1 subjects

First-stage decision boundaries

≤ l1
responses

> l1 and < u1 responses
≥ u1

responses

Acceptance of H0

Early termination
Evaluation of additional n2 subjects

Rejection of H0

Early termination

Second-stage decision boundaries

≤ l2 responses > l2 responses

Acceptance of H0 Rejection of H0

Figure 2.1.: Layout of classical phase II designs in oncology

are written as

H0 : π = π0 vs. H1 : π = π1.

Note that rejection of the null hypothesis leads to the conclusion that π > π0, i.e., the drug

is promising enough to move to the next step in drug development, not that π > π1. If the

treatment has not shown sufficient activity to reject the null hypothesis, it is convenient

to say that the null hypothesis is accepted.

Typically, phase II trials in oncology are performed due to ethical considerations with

planned interim analyses to allow early termination. Usually, only one interim analysis is

implemented according to logistical and efficiency considerations (Mariani and Marubini,

1996; McPherson, 1982). In the first stage, n1 patients are recruited and treated. If the

number of observed responses out of the n1 initial patients is less or equal than l1 or at least

u1, the trial is terminated after the interim analysis for futility or efficacy, respectively.

Otherwise, the trial continues to the second stage with inclusion of a further n2 patients.

If the total number of observed responses after stage two exceeds l2, the treatment is

proven to be promising for further investigation. Otherwise, the treatment is rejected.

The general layout of the design is illustrated in Figure 2.1.

If the true response rate is π, these trials are terminated after the first stage with proba-
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bility

PET(π) =

l1
∑

k=0

b(k;π, n1) +

n1
∑

k=u1

b(k;π, n1), (2.1)

where b denotes the binomial probability mass function. This leads to an expected sample

size of

EN(π) = n1 · PET(π) + (n1 + n2) ·
(

1− PET(π)
)

.

The type I and II error rates are given by

α′ = 1−
[

B(l1;π0, n1) +

min(n1,u1−1)
∑

k=l1+1

b(k;π0, n1) ·B(l2 − k;π0, n2)

]

(2.2)

and

β′ = B(l1;π1, n1) +

min(n1,u1−1)
∑

k=l1+1

b(k;π1, n1) ·B(l2 − k;π1, n2) (2.3)

with the cumulative binomial distribution function B.

The sample sizes n1 and n2 and the decision boundaries u1, l1 and l2 are determined such

that the type I error rate is at most α and the type II error rate is at most β under the null

hypothesis H0 : π = π0 and the alternative H1 : π = π1, respectively, where π0 and π1,

π0 < π1, define insufficient and promising anti-tumor activity. One class of designs stops

after the first stage for futility only, i.e., if the initial proportion of observed responses

is too low. Not stopping for reasons of efficacy after the first stage might be in the best

interest of the patients. The patient collective would be treated with an effective therapy.

Methodologically, this can be achieved by additionally requiring u1 > n1. The designs by

Simon (1989) are the most popular representatives of this class of designs. However, there

are also situations where it is desirable to terminate a phase II trial early if the initial

response rate is high enough to give evidence of activity (Fleming, 1982; Shuster, 2002).

For example, ending a trial early because efficacy has been demonstrated speeds up the

development process. The new therapy can move on to phase III faster than would have

been the case otherwise.

Among all parameter constellations (l1, u1, n1, l2, n2) fulfilling the type I and type II er-

ror constraints, a specific one is usually selected to satisfy an optimality criterion that

is appropriate for the objectives of the current trial. Up to now, a multitude of opti-

mality criteria and corresponding designs have been developed, with minimization of, for

example, (a) the expected sample size under the null hypothesis (Simon, 1989), (b) the

maximum sample size n = n1 + n2 (Simon, 1989), (c) the average of the expected sample

size under the null and alternative hypotheses (Chang et al., 1987), (d) the average or

maximum sample size under the alternative hypothesis (Mander and Thompson, 2010),
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Table 2.1.: Simon’s optimal designs (π1 − π0 = 0.2)

π0 π1 α β l1 n1 l2 n2 n EN(π0) α′ β′

0.05 0.25 0.05 0.2 0 9 2 8 17 12.0 0.047 0.188
0.05 0.1 0 9 3 21 30 16.8 0.049 0.098

0.1 0.3 0.05 0.2 1 10 5 19 29 15.0 0.047 0.195
0.05 0.1 2 18 6 17 35 22.5 0.047 0.098

0.2 0.4 0.05 0.2 3 13 12 30 43 20.6 0.050 0.200
0.05 0.1 4 19 15 35 54 30.4 0.048 0.096

0.3 0.5 0.05 0.2 5 15 18 31 46 23.6 0.050 0.197
0.05 0.1 8 24 24 39 63 34.7 0.050 0.097

0.4 0.6 0.05 0.2 7 16 23 30 46 24.5 0.049 0.199
0.05 0.1 11 25 32 41 66 36.0 0.049 0.098

0.5 0.7 0.05 0.2 8 15 26 28 43 23.5 0.050 0.196
0.05 0.1 13 24 36 37 61 34.0 0.049 0.099

0.6 0.8 0.05 0.2 7 11 30 32 43 20.5 0.049 0.198
0.05 0.1 12 19 37 34 53 29.5 0.043 0.099

0.7 0.9 0.05 0.2 4 6 22 21 27 14.8 0.049 0.196
0.05 0.1 11 15 29 21 36 21.2 0.046 0.095

(e) the median sample size (Hanfelt et al., 1999), or (f) the globally maximized expected

sample size for all π ∈ [0, 1] (Shuster, 2002). Table 2.1 (for π1 − π0 = 0.2) and Table B.1

in the Appendix (for π1 − π0 = 0.15) list for a variety of parameter constellations the

layout of Simon’s phase II designs minimizing the expected sample size under the null

hypothesis (optimal designs). Tables 2.2 (for π1 − π0 = 0.2) and B.2 (for π1 − π0 = 0.15)

list the corresponding designs minimizing the maximum sample size (minimax designs).

As Simon (1989) does not allow for early stopping for efficacy, the parameter u1 > n1 is

omitted in the presentation.

In recent years, a multitude of variants and refinements of these designs have been sug-

gested. Jung et al. (2004), for example, considered admissible designs that are a compro-

mise between designs minimizing the average sample size under the null hypothesis and

the total sample size. Further generalizations include the implementation of a third stage

(Chang et al., 1987; Chen, 1997; Ensign et al., 1994), the use of stratification (London and

Chang, 2005; Sargent et al., 2001; Tournoux-Facon et al., 2011; Chang et al., 2012), con-

sideration of a combined endpoint or two or more endpoints (Chen and Chi, 2011; Lin and

Chen, 2000; Lin et al., 2008; Kunz and Kieser, 2011a), use of stochastic and non-stochastic

curtailment (Kunz and Kieser, 2011b, 2012; Chen and Chi, 2011), and the application of

full sequential plans (Tan and Xiong, 2010).

Additionally, designs have been presented where the second-stage sample size and the
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Table 2.2.: Simon’s minimax designs (π1 − π0 = 0.2)

π0 π1 α β l1 n1 l2 n2 n EN(π0) α′ β′

0.05 0.25 0.05 0.2 0 12 2 4 16 13.8 0.043 0.199
0.05 0.1 0 15 3 10 25 20.4 0.034 0.099

0.1 0.3 0.05 0.2 1 15 5 10 25 19.5 0.033 0.198
0.05 0.1 2 22 6 11 33 26.2 0.041 0.098

0.2 0.4 0.05 0.2 4 18 10 15 33 22.3 0.046 0.199
0.05 0.1 5 24 13 21 45 31.2 0.048 0.100

0.3 0.5 0.05 0.2 6 19 16 20 39 25.7 0.045 0.196
0.05 0.1 7 24 21 29 53 36.6 0.047 0.098

0.4 0.6 0.05 0.2 17 34 20 5 39 34.4 0.049 0.198
0.05 0.1 12 29 27 25 54 38.1 0.049 0.099

0.5 0.7 0.05 0.2 12 23 23 14 37 27.7 0.048 0.199
0.05 0.1 14 27 32 26 53 36.1 0.046 0.100

0.6 0.8 0.05 0.2 8 13 25 22 35 20.8 0.050 0.192
0.05 0.1 15 26 32 19 45 35.9 0.044 0.100

0.7 0.9 0.05 0.2 19 23 21 3 26 23.2 0.045 0.199
0.05 0.1 13 18 26 14 32 22.7 0.050 0.099

corresponding decision boundary depend in a pre-specified way on the responses observed

in the interim analysis. These methods can result in more effective phase II designs, but

require that the rule for the design modifications is already specified in the protocol. First

attempts to construct such designs were made by Lin and Shih (2004) and Banerjee and

Tsiatis (2006). Lin and Shih presented a design where, based on the results of the interim

analysis, the study is powered for either a skeptical or an optimistic target response rate.

Therefore, depending on the number of responses in the first stage, two different sample

sizes are possible. Banerjee and Tsiatis used a Bayesian decision-theoretic construct to

develop optimal adaptive two-stage designs. In the setting of two parallel Simon designs,

Jones and Holmgren (2007) presented how one design can influence the other.

As a common feature of all these approaches, the sample sizes of the two stages and

the decision rules for the interim and the final analysis have to be specified a priori and

adhered to strictly during the course of the study in order to assure control of the type I

error rate. However, there is usually a considerable degree of uncertainty in the planning

stage of a clinical trial, especially in early drug development. For example, the activity of

the new agent may be higher than anticipated when specifying the target response rate

(or lower but still of clinical importance). Even if the interim results suggest that the

initial assumptions would not hold true and modification of the design would therefore be

appropriate, the study has to be continued according to the specified rules. As another

example, stopping recruitment exactly after accrual of a predefined number of patients
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may be difficult, especially in multicenter studies, possibly leading to violation of the

predetermined sample size.

Some attempts have been made to ease the strong restrictions imposed by the common

two-stage designs. Green and Dahlberg (1992) described approaches to deal with the

situation that the attained sample size is not equal to the planned one. However, this

method only allows for reaction to unintentional over- or underrunning and does not

guarantee that the significance level is kept. Following up Green and Dahlberg, Chen and

Ng (1998) developed flexible designs with control of the average type I error rate under

the assumption that each of the possible scenarios of over- or underrunning has the same

probability of occurrence. For three specific scenarios, Wu and Shih (2008) investigated

how to handle the data of a phase II trial when Simon’s two-stage design is pre-specified

but the trials deviates from it. Koyama and Chen (2008) presented a method for proper

inference from Simon’s two-stage design when the actual sample size in the second stage

differs from the planned one. Their procedures, however, only cover unintentional or non-

informative sample size changes, i.e., when the decision to change the sample size of the

second stage was made blinded to any information gained throughout the trial. Therefore,

unforeseen events or situations where a variety of aspects have to be taken into account

when re-shaping the design of an ongoing trial cannot be adequately handled by these

procedures. For example, data from the current or a parallel trial may indicate that

the response rate of the treatment is higher than expected (or lower but still clinically

relevant), making a decrease (or increase) of the sample size desirable.

Due to these limitations, the universe of potential situations arising in practice cannot

be covered. Therefore, two-stage designs that allow greater flexibility while maintaining

the type I error rate would be desirable. Adaptive design methodology that has been

developed to perform arbitrary design modifications while controlling the type I error rate

is presented in the next section.

2.2. Adaptive and flexible designs

In confirmatory clinical trials with fixed sample size and a given significance level, the total

sample size of the design is chosen to assure sufficient statistical power for a pre-specified

treatment difference. In practice, the prior assumption with regard to the treatment effect

is derived from earlier studies or literature. Through data from a parallel trial it may

become apparent during the conduct of the trial that the assumption does not reflect the

actual treatment difference for the considered population. When this happens, the power

of the trial will be different from what is needed and the trial is underpowered or oversized.

In these situations, it may be desirable to adjust the design of the ongoing trial accordingly.
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Adaptive designs have been proposed that enable design modifications during an ongoing

clinical trial under control of the overall significance level. Special attention was given to

adaptive designs in 2006, when the FDA released a Critical Path Opportunities List that

calls for advancing innovative trial designs by using accumulated information in designing

trials.

The term adaptive design is nowadays so frequently used in clinical trials methodology

that a Google search will yield more than half a million direct hits (accessed January 24,

2013). Unfortunately, no clear definition of adaptive design seems to exist. Proposed

definitions include the following:

“[An] adaptive design [is] a design that allows modifications to some aspects

(e.g., trial procedures and/or statistical procedures) of an on-going clinical trial

after its initiation, without undermining the validity and integrity of the trial.”

Chow et al. (2005)

“By adaptive design we [the Pharmaceutical Research Manufacturer Associa-

tion (PhRMA) working group] refer to a clinical study design that uses accu-

mulating data to decide how to modify aspects of the study as it continues,

without undermining the validity and integrity of the trial.”

Gallo et al. (2006)

“An adaptive design clinical study is defined as a study that includes a prospec-

tively planned opportunity for modification of one or more specified aspects

of the study design and hypotheses based on analysis of data (usually interim

data) from subjects in the study.“

FDA (2010)

Other authors further categorize adaptive designs into classes depending on what aspects

of the trial are changed. The categories used by Pong and Chow (2010) or Chow and

Chang (2008) include, for example, classical and adaptive group-sequential designs, flexible

sample size re-estimation methods and the drop-the-losers, adaptive dose finding, seamless

phase I/II and phase II/III, adaptive randomization, hypothesis-adaptive and biomarker-

adaptive designs.

In this thesis, the major focus lies on the degree of flexibility allowed by adaptive designs.

Therefore, adaptive designs are classified not based on what adaptations are performed,

but according to how these adaptations are carried out. The terms adaptive design and

flexible design, used throughout this thesis, are defined as follows:
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Definition 2.1. (Adaptive design). A (per-design) adaptive design is a design allowing

modifications of an ongoing trial that follow strict predefined rules for adaptation.

Definition 2.2. (Flexible design). A flexible design is a design where the rules for design

changes do not have to be pre-specified.

These definitions of adaptive and flexible correspond to the terms planned flexible and fully

flexible used by Bauer (2008) and the terms adaptivity and flexibility used by Brannath

et al. (2007).

Several versions of adaptive and flexible designs controlling the type I error rate are avail-

able and it is not possible to give a comprehensive overview of these designs here. In

the following sections, we point out the most fundamental concepts and methods of these

designs.

2.2.1. Adaptive designs

One of the first types of adaptive designs proposed in the literature were group-sequential

designs. In these designs one or more interim analyses are implemented and at each

interim analysis it is decided whether the study is to be stopped early for efficacy or

futility or whether the study should be continued to the next stage. A special case of

group-sequential designs are full sequential designs, where an interim analysis is performed

after each observational unit. If significance tests at a predetermined level are performed

repeatedly at each stage during data collection, it becomes more likely that a significant

result will be obtained under the assumption of no effect (Armitage et al., 1969). Group-

sequential methods therefore use adjusted levels at each stage to control the nominal

significance level for the complete trial. These adjusted levels can be selected in a variety

of possible ways. The two most common layouts, widely used in clinical research, were

presented by Pocock (1977) and O’Brian and Fleming (1979). These authors proposed

group-sequential plans for normal responses with known variance and a fixed number of

looks into the data. In these sequential sampling schemes the final sample size is not

fixed but random and depends on the interim results. In standard group-sequential tests,

the sample sizes for each stage and the rules at each interim analysis are fixed. The

α-spending function or use function approach proposed by Lan and DeMets (1983) and

DeMets and Lan (1994) eases these restrictive requirements and allows the sample sizes of

the different stages to vary. However, all following stages must be planned independently

of the observed data.

Adaptive designs allow the layout of the following stages and corresponding rejection re-

gions to depend on accumulated data of an interim analysis. This idea is closely related to
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internal piloting, first explored by Wittes and Brittain (1990). For the necessary adjust-

ment of the design parameters, several authors have suggested sample size re-estimation

based on blinded data to provide an updated estimate of a nuisance parameter (Gould,

1995; Kieser and Friede, 2000, 2003; Friede and Kieser, 2004). Also, methods using the

unblinded interim data have been proposed. For phase II oncology trials, such designs have

been presented, for example, by Lin and Shih (2004) and Banerjee and Tsiatis (2006) (see

Section 2.1). As the rule for design modifications is already a priori specified, it cannot

be changed during the trial without undermining trial integrity. This is not the case for

flexible designs, where changes to the design are allowed in a flexible manner based on the

sequentially computed observed treatment differences. These designs may not only account

for the accumulated information in the trial but may also make use of external informa-

tion. Note that every flexible design with a pre-fixed adaptation rule is per definitionem a

per-design adaptive design. This is also the reason why most per-design adaptive designs

are planned using flexible design methodology. Flexible designs are described in more

detail in the following section. Tsiatis and Mehta (2003) showed that per-design adaptive

designs can be uniformly improved by using standard group-sequential tests based on the

sequentially computed likelihood ratio test statistic. However, pre-specification of recal-

culation rules counteracts the flexibility desired in clinical research (Timmesfeld et al.,

2007). In practice, it is impossible to specify a suitable recalculation rule that adequately

reacts to every possible eventuality in the course of the trial.

2.2.2. Flexible designs

Bauer (1989a,b) introduced in a hotly debated article the idea of incorporating the un-

blinded data from the current trial as well as from parallel studies for mid-trial adaptations.

Flexible designs methodology includes both terminating the trial early and redesigning

the trial, with no necessity for pre-specification of a recalculation rule, thus achieving far-

reaching flexibility. Historically, two concepts were introduced to allow for these changes

under control of the nominal type I error rate. A good overview is given in a tutorial on

flexible designs by Bretz et al. (2009).

We present both concepts in detail for studies with two stages, i.e., one interim analysis,

continuous test statistics and a single one-sided null hypothesis. Under this setting, both

approaches can be defined by the one-sided p-values p1 and p2 obtained from the separate

stages of the trial. This ensures that the distributions of p1 and p2 are independent and

that, per construction of continuous p-values, both p1 and p2 are uniformly distributed

under H0.

The two approaches, denoted as combination test method and conditional error function
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method are outlined in the following sections. The former concept, introduced by Bauer

and Köhne (1994), involves combining p-values of the different stages through an appro-

priate combination function C(p1, p2). The latter strategy, developed by Proschan and

Hunsberger (1995) is based on a function that defines the conditional type I error rate of

the second stage through a function A(p1) depending on the first-stage p-value p1.

Combination test method

A two-stage combination test procedure for testing a null hypothesis H0 can be defined

in terms of a combination function C(p1, p2) which combines the one-sided p-values of the

two stages. Usually, early stopping boundaries α0 and α1 with 0 ≤ α1 < α0 ≤ 1 are

defined. The value α1 is the local significance level to reject the null hypothesis after the

first stage and α0 defines a futility boundary.

After the first stage of the trial, the p-value obtained from the first-stage data p1 is

computed. If p1 falls below α1, the trial is stopped after the first stage with rejection of

the null hypothesis. If p1 exceeds α0, the trial is stopped for futility. Otherwise, based

on the interim results and the observed test statistic p1, adaptations may be carried out

and the trial continues to the second stage. After the end of the study, the p-value of the

second stage p2 is computed and a combination function C(p1, p2) is applied. The null

hypothesis is rejected after the second stage if the combined value falls below a boundary

cα. The general layout of the combination test method is illustrated in Figure 2.2.

Several versions of combination functions have been proposed in the literature (Bauer and

Köhne, 1994; Chang, 2007; Cui et al., 1999; Lehmacher and Wassmer, 1999). The three

most common ones are listed below:

• Fisher’s combination criterion, product of p-values (Bauer and Köhne, 1994):

C(p1, p2) = p1 · p2

• Sum of p-values (Chang, 2007):

C(p1, p2) = p1 + p2

• Inverse normal (Lehmacher and Wassmer, 1999):

C(p1, p2) =
(

Φ−1(1− p1) + Φ−1(1− p2)
)

/
√
2.

Given a specific combination method, the values of α0, α1 and cα are chosen such that the

type I error rate is controlled. It is given by

α1 +

∫ α0

α1

PrH0

(

C(p1, P2) ≤ cα
)

dp1, (2.4)
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Calculation of first-stage p-value p1

First-stage decision boundaries

p1 ≤ α1 p1 > α1 and p1 < α0 p1 ≥ α0

Rejection of H0

Early termination
Calculation of second-stage p-value p2

Acceptance of H0

Early termination

Second-stage decision boundaries

C(p1, p2) ≤ cα C(p1, p2) > cα

Rejection of H0 Acceptance of H0

Figure 2.2.: Layout of classical combination test procedures

where P2 denotes the random variable of the second-stage p-value p2. As p2 is uniformly

distributed on [0, 1] under H0 regardless of the adaptations made after the interim anal-

ysis, PrH0

(

C(p1, P2) ≤ cα
)

is independent with respect to the adaptations performed.

Appropriate selection of the values α0, α1 and cα therefore guarantees that the type I

error rate is not inflated within a flexible combination test procedure. For a formal proof

see Bauer (1989a) or Bauer and Kieser (1999).

Bauer and Köhne (1994) used Fisher’s combination criterion where H0 is rejected at a

specified nominal level α after the second stage if the product of the p-values from the two

stages is small enough, that is if p1p2 ≤ cα, where cα = exp[−1
2χ

2
4(1 − α)] and χ2

4(1 − α)

is the (1− α)-quantile of the central χ2 distribution with 4 degrees of freedom. Following

Bauer and Köhne, the values α0 and α1 are determined such that the overall type I error

rate (2.4) is exhausted, i.e., by solving the equation

α1+

∫ α0

α1

PrH0

(

p1P2 ≤ cα
)

dp1 = α1+

∫ α0

α1

cα/p1 dp1 = α1+ cα(lnα0− lnα1)
!
= α. (2.5)

Table 2.3 lists for different significance levels α suitable choices of cα, α0 and α1. Here,

cα is calculated as above and α1 is calculated by inverting (2.5) given the value of cα

and an early futility boundary α0. Note that for α0 = 1 no early stopping for futility is

considered.
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Table 2.3.: Critical boundaries for the Bauer and Köhne combination test

α 0.10 0.05 0.025 0.010
cα 0.0205 0.0087 0.0038 0.0013

α0 α1

0.3 0.0703 0.0299 0.0131 0.0045
0.4 0.0618 0.0263 0.0115 0.0040
0.5 0.0548 0.0233 0.0102 0.0035
0.6 0.0486 0.0207 0.0090 0.0031
0.7 0.0429 0.0183 0.0080 0.0027
1 0.0205 0.0087 0.0038 0.0013

Conditional error function method

Proschan and Hunsberger (1995) introduced the concept of conditional error functions

as a method for testing a null hypothesis within a two-stage design while allowing data-

dependent modifications of the sample size after the first stage. In these designs, the

conditional significance level of the second part of the trial depends on the outcome of the

first stage in a pre-specified way while the unconditional type I error rate is still controlled.

For a given level α, the conditional error function A is defined as a non-increasing function

A(p) : [0, 1] → [0, 1] with
∫ 1

0
A(p) dp ≤ α. (2.6)

The value A(p1) specifies the conditional type I error rate used for the second stage, given

the first-stage p-value p1. The additional requirement that A(p) is non-increasing is a

logical one and ensures that outcomes of the first stage that are less likely under the null

hypothesis, i.e., smaller p-values, are associated with higher local significance levels of

stage two.

Consider a one-sided null hypothesis H0 which is tested in a two-stage design. Let p1

and p2 again denote the p-values for H0, such that p1 and p2 are based only on the first-

and second-stage data, respectively. If in the first stage a p-value p1 of the corresponding

random variable P1 is realized, any stochastically independent test statistic can be used

to test H0 in the second stage at a nominal level less than or equal to A(p1). The null

hypothesis is rejected if the second-stage p-value p2 satisfies p2 ≤ A(p1). Of course, with

A(p1) = 0 or A(p1) = 1, respectively, early stopping after the first stage with acceptance

or rejection of the null hypothesis is possible. As the first- and second-stage p-values are

uniformly distributed under the null hypothesis, (2.6) guarantees that the overall type I

error rate is controlled even if the design characteristics of the second stage have been

modified based on any information available at the end of the first stage. The concept of



2.2. Adaptive and flexible designs 17

conditional error function was generalized by Müller and Schäfer (2001, 2004) to implement

flexible design changes any time during the course of a trial. They used a special natural

conditional error function calculated from the planned design, the conditional rejection

region. This function is then used for the further design of interim analyses or for redesign

of the trial.

In both the combination test method and the conditional error function method, the

rejection region for the final decision rule is invariant with respect to mid-trial design

adaptations conditional on the results of the interim analysis. This fundamental principle

of flexible designs is called the conditional invariance principle by Brannath et al. (2007).

The two approaches are basically two different ways of specifying a level α rejection region

in the two-dimensional (p1, p2)-plane (Posch and Bauer, 1999; Schäfer et al., 2006). For

all combination test procedures presented above, equivalent representations in term of

conditional error functions are possible. For example, the choice

A(p1) =







1 if p1 ≤ α1

cα/p1 if α1 < p1 < α0

0 if p1 ≥ α0

defines the Bauer and Köhne combination test in terms of a conditional error function. For

illustration, Figure 2.3 displays the corresponding level α rejection region in the (p1, p2)-
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Figure 2.3.: Rejection region of the Bauer and Köhne design
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plane as a gray area for the choices α = 0.1 and α0 = 0.5 and therefore cα = 0.0205 and

α1 = 0.0548 (see Table 2.3).

A formal proof that the two approaches are essentially equivalent was provided by Van-

demeulebroecke (2006). Therefore, all general findings and advances in flexible designs

apply to both approaches. The methodology for flexible designs has been considerably

extended in recent years and now covers, for instance, implementation of further interim

analyses (Brannath et al., 2002), adjustment for covariates (Ayanlowo and Redden, 2008),

calculation of the overall study p-value (Brannath et al., 2002), estimation of the treat-

ment effect and calculation of confidence intervals (Coburger and Wassmer, 2001; Posch

et al., 2005; Brannath et al., 2006), and multiple test procedures (Bauer and Kieser, 1999;

Kieser et al., 1999; Brannath et al., 2007). However, all these methods are tailored to

comparative studies with continuous outcomes. In the next chapter, we will investigate

the characteristics of flexible design methods applied to discrete test statistics.



You can’t fix by analysis what you bungled by

design.

(Light, Singer and Willett 1990)

3
Drawbacks with Adaptive Designs

Applied to Discrete Test Statistics

Brannath et al. (2002) showed that the p-values in flexible designs do not necessarily need

to be uniformly distributed. A sufficient requirement for type I error rate control with the

combination test approach is the p clud condition.

Definition 3.1. (p clud). The distribution of p values pt (t = 1, 2) is called p clud, if they

satisfy

PrH0(p1 ≤ α) ≤ α and PrH0(p2 ≤ α|p1) ≤ α for all 0 ≤ α ≤ 1.

Remark. The property p clud means that the distribution of p1 and the conditional dis-

tribution of p2 given p1 are stochastically at least as large as the uniform distribution on

[0, 1].

Let us assume, as in Section 2.1, that we are testing, in an oncological phase II design,

a binary endpoint with the two outcomes success and failure. The corresponding null

hypothesis is H0 : π = π0, which should be tested at level α using a design with two

stages. Further, as in Section 2.2 on adaptive and flexible designs, let p1 and p2 denote

the stage-wise p-values, such that p1 is based on the n1 observations of the first stage and

p2 on the n2 observations of the second stage. At each stage a binomial test is performed

and the p-values of the two stages with k and l successes in the first and second stage,

respectively, are therefore given by

p1(k) = PrH0(X1 ≥ k) = 1−B(k − 1;π0, n1) (3.1)
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and

p2(l) = PrH0(X2 ≥ l) = 1−B(l − 1;π0, n2), (3.2)

where Xi denotes the random variable of the number of successes in stage i, i = 1, 2,

and B the cumulative binomial distribution. Note that the random variables X1 and X2

are binomially distributed, and therefore the distributions of P1 and P2 are stochastically

larger than the uniform distribution on [0, 1]. Consequently, the distribution of p1 and p2

satisfy the p clud condition given in Definition 3.1. Therefore, the flexible designs method-

ology presented in the preceding chapter can directly be applied to binary endpoints. In

the following sections we will see, however, that the resulting designs will generally be

conservative and that apparently self-evident solutions will lead to inflation of the type I

error rate.

3.1. Combination test method

As presented in Section 2.2.2, combining stochastically independent uniformly distributed

p-values of the two stages is a common approach to construct flexible designs for continuous

test statistics. Bauer and Köhne (1994) used Fisher’s combination criterion where H0 is

rejected after the second stage if the product of the p-values from the two stages is smaller

than a boundary cα. For continuous test statistics and uniformly distributed p-values, the

overall level α is then maintained regardless of the adaptations made. Due to the fact

that for binary endpoints the distributions of P1 and P2 are stochastically larger than

the uniform distribution, the designs and decision boundaries developed for uniformly

distributed p-values can be applied and the level will be maintained. However, the level α

will not be exhausted as for continuous test statistics, associated with a loss in power or

an increased sample size. Without stopping for futility, the actual type I error rate of the

Bauer and Köhne (1994) two-stage design for binary endpoints and sample sizes for both

stages fixed is given by

α′ = PrH0(P1P2 ≤ cα) =
∑

k,l with p1(k)p2(l)≤cα

b(k;π0, n1)b(l;π0, n2),

where b denotes the probability mass function of the binomial distribution.

As an example we consider a two-stage trial with n1 = 19, n2 = 26, π0 = 0.3 and α = 0.05

with corresponding cα = 0.0087 (see Table 2.3). This results in α′ = 0.0282, which

is considerably below the nominal level α. Applying boundaries for early stopping for

futility or efficacy α0 < 1 and α1 > cα, respectively, as introduced in Section 2.2.2, may

result in an even more extreme undershooting of the desired level and consequently in a
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further loss of power. For example, the use of α0 = 0.5 with a resulting α1 = 0.0233 leads

to an actual level of

α′ = PrH0(P1 ≤ α1) + PrH0(P1P2 ≤ cα, α1 < P1 < α0)

=
∑

k,l with p1(k)≤α1 ∨
{p1(k)p2(l)≤cα ∧ α1<p1(k)<α0}

b(k;π0, n1)b(l;π0, n2)

= 0.0251

and thus to a spending of only about half of the nominal level. With increasing n1

and n2 the approximation of the distribution of the discrete p-values by the uniform

distribution will improve, and hence the actual level will increase towards α. However, the

approximation remains poor for sample sizes typically used in single-arm phase II trials

in oncology. For example, even for the rather extreme scenario of n1 = 50 and n2 = 100

the actual level still amounts to only α′ = 0.0317 for the above mentioned two-stage study

(π0 = 0.3, α = 0.05, α0 = 0.5, α1 = 0.0233).

On first sight, a straightforward solution of the above described conservativeness may

be obtained by enlarging α1 or cα and thus achieving a better exhaustion of the level.

However, this results in a dependence of cα and α1 from the sample size of the second

stage which can lead to conflicting decisions and counterintuitive events if the sample

size is changed after the interim analysis. For example, with α1 depending on n2 it is

possible to change the sample size after the interim analysis such that an early stopping

with rejection of H0 is possible although the trial would have been continued according to

the initially specified decision rules. If the second-stage sample size is changed from n2 to

n∗
2 this occurs for α1(n2) < p1 ≤ α1(n

∗
2).

The dependence of the decision rule for the second stage on n2 is also problematic. Con-

sider again a two-stage design with n1 = 19, n2 = 26, π0 = 0.3 and α = 0.05. With

α0 = 0.5 and α1 = 0.0233 fixed, an increase of cα to c′α = 0.0202 will maintain the level

with

α′ = PrH0(P1 ≤ α1) + PrH0(P1P2 ≤ c′α, α1 < P1 < α0) = 0.0493.

Likewise, c∗α = 0.0233 is possible for the choices of n1 = 19 and n2 = 19. Here we have

α′ = PrH0(P1 ≤ α1) + PrH0(P1P2 ≤ c∗α, α1 < P1 < α0) = 0.0489.

Even though both designs separately control the nominal level for fixed sample sizes, an

adaptive design combined of both will not share this property. Consider the following

adaptive scenario: With p1 = 0.033 resulting from k = 10 successes out of n1 = 19

observations, the sample size of the second stage is reduced from n2 = 26 to n∗
2 = 19
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and the corresponding boundary is used; otherwise the originally planned design and

corresponding decision rule is used. The resulting adaptive test has a type I error rate of

α′ = PrH0(P1 ≤ α1) + Pr(P1P2 ≤ c′α, α1 < P1 < α0, P1 6= 0.033)

+ Pr(P1P
∗
2 ≤ c∗α, P1 = 0.033)

= 0.053,

where P ∗
2 denotes the random p-value of the modified second stage. Surprisingly, this

design does not control the level any more.

From a more general viewpoint, every dependence of the decision rules from the second-

stage data will violate a common principle of adaptive designs which is called the condi-

tional invariance principle (Brannath et al., 2007). It states that the final decision rule

must be invariant with respect to mid-trial design changes conditional on the results from

the interim analysis.

3.2. Conditional error function method

As noted in Section 2.2.2, for each combination test procedure there exists an equivalent

representation in terms of the conditional error function. Therefore, a direct application of

(continuous) conditional error functions will result in the same findings as in the preceding

section. However, it is possible to adapt the conditional error function to the setting of

discrete test statistics.

In analogy to (2.6), we define for two-stage designs with discrete outcomes the discrete

conditional error function D.

Definition 3.2. (Discrete conditional error function). A discrete conditional error func-

tion is defined as a function D(p) : [0, 1] → [0, 1] with support P1 and

∑

p∈P1

D(p) · PrH0(P1 = p) ≤ α, (3.3)

where P1 denotes the finite set of possible outcomes p1 of the random variable P1.

We further require that D is non-increasing on its support P1. As for the continuous

counterpart, this is a logical restriction and ensures that smaller p-values observed in

stage one are associated with higher conditional error levels for the second stage. Note

that the discrete conditional error function only depends on the design characteristics of

the first stage.
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As in the continuous case, the null hypothesis is rejected if the second-stage p-value p2

satisfies p2 ≤ D(p1). With D(p1) = 0 or D(p1) = 1, respectively, early stopping after

the first stage with acceptance or rejection of the null hypothesis is possible. If the first-

and second-stage p-values are p clud, (3.3) guarantees that the overall type I error rate is

controlled even if the design characteristics of the second stage have been modified based

on any information available at the end of the first stage.

We now show that classical phase II designs presented in Section 2.1 can alternatively

be formulated in terms of our novel concept of discrete conditional error functions. As

the first- and second-stage p-values are p clud, flexible design changes are then possible.

Therefore, this is the first fundamental step to achieve the goal of flexible phase II oncology

trials. Later, in Chapters 4 and 5, we will refine and extend the concept of discrete

conditional error functions leading to designs that are both flexible and more efficient as

compared to classical phase II designs.

Theorem 3.3. In phase II designs with binary endpoint and p-values given by (3.1) and

(3.2), the type I error rate α′ of such a design can alternatively to (2.2) be calculated by

α′ =

n1
∑

k=0

CE(k) · PrH0

{

P1 = p1(k)
}

, (3.4)

where

CE(k) =







0 if k ≤ l1
1−B (l2 − k, π0, n2) if l1 < k < u1
1 if k ≥ u1

(3.5)

defines the conditional type I error rate when k responses are observed in the first stage.

Proof. We have

α′ (2.2)
= 1−

[

B(l1;π0, n1) +

min(n1,u1−1)
∑

k=l1+1

b(k;π0, n1) ·B(l2 − k;π0, n2)

]

=

n1
∑

k=0

b(k;π0, n1)−
l1
∑

k=0

b(k;π0, n1)−
min(n1,u1−1)

∑

k=l1+1

b(k;π0, n1) ·B(l2 − k;π0, n2)

=

u1−1
∑

k=l1+1

[

1−B (l2 − k, π0, n2)
]

· b(k;π0, n1) +

n1
∑

k=u1

b(k;π0, n1)

=

n1
∑

k=0

CE(k) · PrH0

{

P1 = p1(k)
}

.
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With (3.3) and (3.4), for any two-stage design with actual level α′ ≤ α a discrete con-

ditional error function can be defined by D(p1(k)) = CE(k), k ∈ {0, . . . , n1}. Note that

this corresponds to the application of the method proposed by Müller and Schäfer (2001,

2004) to the current setting of phase II trials in oncology. By using this ‘natural’ condi-

tional error function, arbitrary design modifications after the first stage can be performed

while still controlling the type I error rate by α. If the design is not changed after the

interim analysis, the applied decision rules and with it the performance characteristics are

identical to those of the original design.

Application of the natural conditional error function makes classical phase II trials flexible

but results in conservative procedures. This conservativeness lies in the fact that the

original two-stage designs are per se conservative due to the discreteness of the used

test statistics. For example, Simon’s design minimizing the total sample size for testing

H0 : π ≤ 0.1 against the alternative H1 : π = 0.3 with α = 0.05 and β = 0.1 is defined

by (l1, n1, l2, n2) = (2, 22, 6, 11) and u1 > n1 (see Table 2.2). The actual type I error rate

of this design amounts to α′ = 0.0409. Choosing D(p1(k)) = CE(k), k ∈ {0, . . . , n1},
the discrete conditional error function exactly matches the decision rules of the classical

design if no design changes are performed and therefore the level then also equals α′ < α.



The three most important areas where statisticians

can contribute, and be influential are design, design

and design.

(Andy Grieve 2002)

4
Flexible Design Methods for Discrete

Test Statistics

Our aim is to derive two-stage designs for testing the one-sided null hypothesis H0 : π ≤
π0 at a prefixed level α and with power 1 − β at H1 : π = π1, π1 > π0, where the

sample size for the second stage can be adapted after the interim analysis in a flexible

way under control of the significance level. For this, we first propose in Section 4.1 a

new fixed two-stage combination test design that is inspired by the Bauer and Köhne

(1994) design. The suggested method combines the independent p-values of the two stages

under a nonadaptive framework, i.e., n1 and n2 fixed, such that the predefined level α is

exhausted to a greater extent than described in the examples above. By calculating the

power for a specified alternative, feasible designs that satisfy the α and β constraints can

be selected. We then show in Section 4.2 that the proposed fixed two-stage design can be

directly transferred into a flexible design by applying adaptive conditional tests. Selecting

a combination test based design as initial start design, the sample size of the second stage

can be changed mid-course while at the same time controlling the type I error rate. If no

adaptations are performed, this design results in identical decision rules and operational

characteristics as the corresponding original design. With no adaptations, the conditional

adaptive test is also identical to the Müller and Schäfer method, which lacks of the same

conservativeness as the original design when the latter does not exhaust the nominal type I

error rate. We show below how this deficiency can be resolved within our flexible two-stage

design based on the combination test approach.

An alternative way to introduce flexibility to phase II designs in oncology is by application

of the conditional error function approach, which allows any change of the design as long
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as the conditional type I error rate of the modified design is kept equal or lower to the

corresponding conditional error function value. We present in Section 4.3 how flexible two-

stage designs can be constructed based on the conditional error function method. This

will lead to a refinement of the concept of discrete conditional error functions presented

in Section 3.2. We will see that application of the conditional error function approach is

similar to the adaptive conditional test. Both are, however, methodologically different, as

the conditional error function starts with an arbitrary fixed function, whereas the second

enables adaptations within fixed designs.

Finally, in Section 4.4 we show how combination of both ideas leads to flexible designs

for phase II oncology trials that are more efficient than those designs presented in the

literature so far.

4.1. Fixed two-stage design based on combination test

approach

In the following, a fixed two-stage design is presented that uses the same type of decision

rules as the Bauer and Köhne (1994) design, i.e., the trial is stopped early for futility if

the first-stage p-value p1 (see (3.1) on page 19) satisfies p1 ≥ α0 or for efficacy if p1 ≤ α1.

Otherwise, the trial is continued and the null hypothesis is rejected in the final stage if

the product of the p-values of both stages, p1 and p2 (see (3.2) on page 20), falls below a

boundary cα. To derive such a design, we need to specify in the planning stage a lower

bound α0 for early acceptance of H0 and an upper bound α1 < α for the amount of type

I error rate that should be spent for the interim analysis.

At first we calculate for given values of α0, α1, n1 and n2 the decision boundary cα such

that the level α is maintained. Due to the discreteness of the test statistics the type I

error rate spent in the first stage γ1 = PrH0(P1 ≤ α1) will usually not fully exhaust α1.

The actual level γ1 of the first stage can be calculated as

γ1 = PrH0(P1 ≤ α1) =
∑

k with p1(k)≤α1

b(k;π0, n1) ≤ α1.

The remaining level γ2 = α−γ1 ≥ α−α1 can now be spent in the second stage to maintain

the overall level α. Note that γ1 and γ2 do not depend on n2.

In the final analysis, Fisher’s combination criterion is used to combine the independent

p-values to the final test statistic. For α1 < p1 < α0 the null hypothesis is rejected after

the second stage if p1p2 ≤ cα. If we define cα by

cα = max
{

x ∈ P12

∣

∣

∑

k,l with p1(k)p2(l)≤x ∧ α1<p1(k)<α0

b(k;π0, n1)b(l;π0, n2) ≤ γ2

}

,
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where P12 denotes the finite range of P1P2, we assure

PrH0(P1P2 ≤ cα, α1 < P1 < α0) ≤ γ2

and thus control of the type I error rate by α. It should be mentioned that the dependence

of cα on the choice of n2 is new in our approach, since in the original design proposed

by Bauer and Köhne for uniformly distributed p-values cα depends on α only. Note

that this dependence allows a better exhaustion of the nominal level, but is also the

reason why the conditional invariance principle is violated and further refinement of the

procedure is required to assure control of the type I error rate in an adaptive framework

(see Section 3.1).

The actual level of the procedure can be calculated as

α′
combination test

= PrH0(P1 ≤ α1) + PrH0(P1P2 ≤ cα, α1 < P1 < α0) (4.1)

=
∑

k,l with p1(k)≤α1 ∨
{p1(k)p2(l)≤cα ∧ α1<p1(k)<α0}

b(k;π0, n1)b(l;π0, n2).

Due to the discreteness, the nominal level α will usually not be fully exhausted, but the

extent of conservativeness is small. For the example considered in Section 3.1, n1 = 19,

n2 = 26, π0 = 0.3 and α = 0.05 with α0 = 0.5 and α1 = 0.02, the resulting level

is α′ = 0.0493. This is very close to the nominal level and considerably higher than

α′ = 0.0251, which resulted from direct application of the Bauer and Köhne method

developed for continuous test statistics.

The power of the procedure for the alternative H1 : π = π1 can be calculated as

1− β′
combination test

= PrH1(P1 ≤ α1) + PrH1(P1P2 ≤ cα, α1 < P1 < α0)

=
∑

k,l with p1(k)≤α1 ∨
{p1(k)p2(l)≤cα ∧ α1<p1(k)<α0}

b(k;π1, n1)b(l;π1, n2).

In order to determine designs that achieve the desired power 1 − β, we need to calculate

the decision boundary cα as described above for fixed α0 and α1 and a wide range of values

for n1 and n2. Among this set of designs, we select those with an actual power of at least

1− β. By construction, these feasible designs satisfy the α and β constraints, and among

them designs with specific characteristics can be selected as presented in Section 2.1. The

average sample number under the null and alternative hypothesis, EN(π0) and EN(π1),
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respectively, can be calculated via

EN(πi) =
(

1− PrHi
(α1 < P1 < α0)

)

· n1 + PrHi
(α1 < P1 < α0) · (n1 + n2) for i = 0, 1.

(4.2)

We now demonstrate that the combination test based designs have very similar proper-

ties to classical phase II designs as given in Section 2.1. To allow for a fair comparison

the design by Chang et al. (1987) was selected, as it also allows for early stopping for

futility. Chang et al. selected the parameter combinations (n1, n2, l1, u1, l2) with l1 < u1

by a computer search algorithm to control the type I and II error rates and to minimize

EN(π01) := 1
2

(

EN(π0) + EN(π1)
)

. In the following, the optimal designs of Chang et al.

are compared with the corresponding optimal fixed two-stage designs based on the combi-

nation test that can be found by selecting the feasible design minimizing EN(π01). Chang

et al. restricted the sample sizes of the stages to multiples of five. As such a restriction

seems not to be necessary in clinical studies we calculated the corresponding oncological

phase II designs of Chang et al. without this restriction according to the algorithm given

in the original article. For the proposed method we determined for given (π0, π1, α, β) the

decision boundary cα for a wide range of the design parameters α0 (0.2 to 0.9 by 0.1), α1

(0.010 to 0.045 by 0.005), n1 (1 to 50) and n2 (1 to 50). Among all feasible designs, the

optimal design minimizing EN(π01) was selected.

The results are given in Table 4.1. For the design of Chang et al. the early futility boundary

l1 and early efficacy boundary u1 are given together with the final futility boundary l2.

As the final decision within the combination test design does not depend on the absolute

number of events but on the product of the p-values, the critical boundary cα is given

instead. For ease of comparison, l1 and u1 were calculated for the proposed method by

selecting the greatest or smallest number of responses in the first stage with p-value greater

than α0 or smaller than α1, respectively.

The proposed method shows very similar characteristics as compared to the optimal design

by Chang et al. In the majority of considered scenarios, the critical boundaries for the

interim analysis are the same for both designs and a closer look on the decision rules after

stage two showed that these are identical, too, for these cases. However, there are also

situations where the proposed design shows a slightly smaller EN(π01) than the design of

Chang et al. that was optimized with respect to this criterion. In the combination test

design, the product of the p-values takes the interim results into account and thus allows

for a better exhaustion of the level. This corresponds to a higher power or a lower average

sample size to achieve a given power.

It should be mentioned that the proposed method provides a huge number of feasible

designs and that the designs minimizing EN(π01) given in Table 4.1 are just special ones.
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The choice of the design can also be tailored to any other specifications made by the study

team, for example, with respect to a minimization of the total sample size.

4.2. Flexible two-stage design based on combination test

approach

We now assume that for given (π0, π1, α, β) a fixed two-stage design based on the combi-

nation test approach is selected according to Section 4.1. In the following, we derive an

adaptive conditional test that allows within this design a flexible mid-course modification

of the sample size of the second stage under control of the type I error rate.

A general justification of adaptive conditional tests can be found in Liu et al. (2002). The

idea is as follows. The sample size n1 of the first stage is fixed in the planning stage. The

observed p-value at the first stage, P1, is random, but the distribution of P1 under the

null hypothesis is known in the planning stage. Conditional on a realization of P1, say

p1, a conditional type I error rate is used in the second stage. Let C(p1) be the function

defining this conditional type I error rate depending on the p-value p1 obtained in the

first stage. If the p-value of the second stage is independent from the first-stage results

and stochastically at least as large as the uniform distribution on [0, 1], then the null

hypothesis is rejected after the second stage if p2 ≤ C(p1). Obviously, for C(p1) = 0 or

C(p1) = 1 early acceptance or rejection of H0 after the first stage, respectively, occurs.

The function C defining the conditional type I error rates is calculated by the experimenter

before the start of the trial based on a fixed design. Therefore, as the latter, it controls

the unconditional type I error, i.e.,

α′
flexible design =

∑

p1∈P1

PrH0(P1 = p1) · C(p1) ≤ α, (4.3)

where P1 denotes the finite range of P1. This is conceptionally similar to the approach by

Müller and Schäfer (2001, 2004).

For the fixed two-stage design based on the combination test developed in the previous

section, the null hypothesis is rejected in the final stage whenever p2 ≤ cα
p1

with α1 < p1 <

α0. Therefore, C(p1) = PrH0

(

P2 ≤ cα/p1
∣

∣ p1
)

for α1 < p1 < α0, p1 ∈ P1, is a natural

choice for mapping the decision rule of the fixed design to a function C. For a p-value

smaller than or equal to α1, the fixed two-stage design is stopped early for efficacy, and for

a p-value of at least α0 it is stopped for futility, i.e., C(p1) = 1 for p1 ≤ α1 and C(p1) = 0

for p1 ≥ α0. With this choice of C, the adaptive conditional test has the same type I error

rate as the fixed combination test design if the sample size is not changed. This follows
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from equations (4.1) and (4.3):

α′
flexible design

=
∑

p1∈P1

PrH0(P1 = p1) · C(p1)

=
∑

p1≤α1
p1∈P1

PrH0(P1 = p1) · C(p1) +
∑

α1<p1<α0
p1∈P1

PrH0(P1 = p1) · C(p1)

+
∑

p1≥α0
p1∈P1

PrH0(P1 = p1) · C(p1)

=
∑

p1≤α1
p1∈P1

PrH0(P1 = p1) +
∑

α1<p1<α0
p1∈P1

PrH0(P1 = p1) · PrH0(P2 ≤ cα/p1|p1)

= PrH0(P1 ≤ α1) + PrH0(P1P2 ≤ cα, α1 < P1 < α0) = α′
combination test.

By construction, the type I error rate of the flexible design is also controlled if the sample

size of the second stage is changed (cf. (4.3)). However, the conditional type I error rate

of stage two C(p1) will then usually not be fully exhausted due to the discreteness of the

distribution. Thus, the maximum achievable level in a flexible setting is α′
combination test. If

for the chosen start design α− α′
combination test > 0, the remaining portion of the level can

be implemented in the flexible design by increasing the function C for specific values of p1

and assuring at the same time control of the type I error rate. There exists a variety of

different ways how this can be achieved. In the following, the values of C were increased

equally for all p1 with C(p1) 6= 0 and C(p1) 6= 1 such that equation (4.3) equals to the

nominal level.

Table 4.2 tabulates the function C, i.e., the adaptive conditional test boundaries of the

second stage, for the fixed two-stage designs presented in Table 4.1. For each considered

combination of (π0, π1, α, β), the critical values for the second-stage p-value C(p1) are

given for each possible realization of p1. To illustrate how to read Table 4.2, consider,

for example, a clinical trial planned for (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.20). According

to Table 4.1, n1 = 11 patients need to be enrolled in the first stage. With at least four

responses, i.e., p1 ≤ α1 = 0.020, the trial is stopped after the interim analysis with the

rejection of H0 (C(p1) = 1). If two or three responses are observed in the first stage

leading to p1 = 0.3026 or p1 = 0.0896, the second stage is planned with a critical value

of C(0.3026) = 0.073 or C(0.0896) = 0.224, respectively. With p1 ≥ α0 = 0.400, i.e., less

than two responses observed in the first stage, the trial is stopped for futility (C(p1) = 0).

It should be noted that while the decision rule of the fixed two-stage design depends on

the sample size of the second stage n2 through the choice of cα, this does not hold true
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Table 4.2.: Adaptive conditional test boundaries calculated for the fixed combination test

design corresponding to the optimal design of Chang et al. (1987)

π0 π1 α β Adaptive conditional test boundaries

0.1 0.3 0.05 0.2 p1 ≤0.020 0.0896 0.3026 ≥0.400
C(p1) 1 0.224 0.073 0

0.1 p1 ≤0.025 0.0826 0.2382 ≥0.300
C(p1) 1 0.228 0.090 0

0.2 0.4 0.05 0.2 p1 ≤0.040 0.1057 0.2418 ≥0.300
C(p1) 1 0.133 0.024 0

0.1 p1 ≤0.035 0.0867 0.1958 0.3704 ≥0.400
C(p1) 1 0.147 0.035 0.035 0

0.3 0.5 0.05 0.2 p1 ≤0.020 0.0480 0.1133 0.2277 ≥0.300
C(p1) 1 0.329 0.187 0.092 0

0.1 p1 ≤0.030 0.0652 0.1294 0.2292 ≥0.300
C(p1) 1 0.202 0.116 0.061 0

0.4 0.6 0.05 0.2 p1 ≤0.025 0.0565 0.1275 0.2447 ≥0.300
C(p1) 1 0.261 0.150 0.078 0

0.10 p1 ≤0.025 0.0518 0.1082 0.1993 0.3263 ≥0.400
C(p1) 1 0.236 0.146 0.083 0.043 0

0.5 0.7 0.05 0.2 p1 ≤0.025 0.0577 0.1316 0.2517 ≥0.300
C(p1) 1 0.271 0.148 0.070 0

0.10 p1 ≤0.030 0.0610 0.1239 0.2210 0.3506 ≥0.400
C(p1) 1 0.181 0.101 0.050 0.050 0

for the adaptive conditional test boundaries. The function C and with it the conditional

type I error rate used in the second stage are determined before the start of the trial and

are therefore independent of changes made throughout the conduct of the trial. For this

reason, the conditional invariance principle mentioned in Section 3.1 is adhered to.

The flexible two-stage design based on combination test is based on the fixed two-stage

design and, by construction, the type I error rate and power are identical if the initially

planned n2 is not changed. Therefore, it is possible to plan a study quite similar to the

design of Chang et al. by selecting an appropriate fixed two-stage design as shown in

Section 4.1 and using it as start design. Even though this selected design may be modified

throughout the study, it is a key element of this proposed method because it mainly

influences the extent of exhaustion of the type I error rate and with it the achieved power

in case that the sample size is not changed. Consequently, when applying the flexible

two-stage design based on combination tests the choice of the start design is essential and

should therefore be based on some optimality criterion.
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4.3. Flexible two-stage design based on conditional error

functions

As a second approach we want to investigate the potential of conditional error functions

as a method for construction of flexible two-stage phase II design under control of the type

I error rate. We have seen in Section 3.2 that a discrete conditional error function, which

was constructed in analogy to the continuous counterpart, allows for arbitrary design

modifications in phase II designs while still controlling the nominal significance level.

Thus it is directly possible to allow flexibility in all standard phase II designs presented

in Section 2.1. However, we also noted that this method suffers from conservativeness for

every two-stage design with α′ < α, which is true for most phase II designs (see Section 3.2

or Table 2.1, 2.2, B.1 and B.2). Our aim is to reduce this conservativeness by refining the

application of discrete conditional error function, possibly leading to more efficient flexible

phase II designs.

A possible solution of this conservativeness is to use a discrete conditional error function

for which equality holds true in (3.3). However, this would lead to an exhaustion of the

level only if every conditional error rate was attainable in the second stage. In designs

with binary endpoint, only discrete p-values can be achieved and, consequently, the actual

conditional level of the second stage rarely reaches the planned level D(p1). Consider the

situation that a study testing H0 : π = 0.1 against the alternative H1 : π = 0.3 with

α = 0.05 and β = 0.1 is planned with the discrete conditional error function

D(p1) =

{

0.1108 if P1 ∋ p1 < 0.5
0 else.

According to (3.3), the type I error rate of the resulting fixed design is

α′ = 0.1108 · PrH0(P1 < 0.5) = 0.05 = α.

However, choosing n2 = 10 as the sample size for stage two, only a conditional error rate

of 0.0555 instead of the available conditional level of 0.1108 is attainable if p1 < 0.5, and

the actual level amounts to

α′
n2=10 = 0.0555 · PrH0(P1 < 0.5) = 0.0251 < α.

Therefore, only approximately half of the planned level is used for n2 = 10. More insight

in this general issue is given by the following theorem.

Theorem 4.1. The conservativeness in application of discrete conditional error functions

cannot be eliminated by constructing a discrete conditional error function that accounts for

the discreteness of the second stage if at the same time the option for an arbitrary sample

size adaptation is to be maintained.
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Proof. We prove for the application of discrete conditional error functions:

Option for an arbitrary sample size adaptation ⇔ The second stage is planned for uni-

formly distributed p-values.

“⇒”: A flexible design must adhere to the conditional invariance principle mentioned

above, i.e., the rejection region must be invariant with respect to mid-trial design adap-

tations, especially with respect to a change in second-stage sample size. If n2 can be

modified completely freely, (nearly) every conditional level is attainable even though for

each selected sample size only a finite number of levels can be reached. In case that the

available conditional level is actually attained, the ‘spent’ conditional level is identical to

the one in the continuous case. Therefore, the invariance requires that the second stage

must be planned for uniformly distributed p-values.

“⇐”: Even if changes are performed in the interim analysis, the second-stage p-value

is stochastically at least as large as the uniform distribution. Therefore, a rejection re-

gion calculated for uniformly distributed p-values will maintain the level. Thus, to allow

adaptive planning with discrete test statistics it is sufficient to plan the second stage for

uniformly distributed p-values.

According to Theorem 4.1, the discreteness of the second stage must be addressed in

another way. For this, we use the natural conditional error function defined in Section 3.2

as a starting point. In case of no adaptations, the related design has the same level

α′ ≤ α as the original design as then the conditional error rates are exactly met. If the

original design is conservative, i.e., α′ < α, the remaining level α−α′ can be implemented

to overcome the conservativeness in a flexible setting. This is done by increasing D(p)

such that equality results in (3.3). With this modified discrete conditional error function,

the level is maintained even for uniformly distributed p-values and thus the requirement

described above is fulfilled. The increase of the boundaries of the conditional error function

results in a design that is at least as powerful as the original design if no adaptations are

performed. However, situations exist where the null hypothesis cannot be rejected in the

original design but in the new design. This occurs if the p-value of the second stage falls

between the conditional levels of the original and the design with increased boundaries.

The boundaries of the conditional error function can be increased in a multitude of ways.

This flexibility enables the study team to fine-tune the design for the desired adaptation

strategy. If, for example, the sample size will only be changed if few responses are observed

in the first stage, it is consequent to increase the discrete conditional error function just

for the corresponding values of p1.
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4.3.1. Flexible version of Simon’s two-stage design

Simon’s designs (Simon, 1989, see Table 2.1, 2.2, B.1 and B.2) are the most popular phase

II designs for oncology trials that allow stopping for futility only. We present in the

following how the proposed discrete conditional error function approach can be applied to

these designs thus allowing a completely free sample size modification after the interim

analysis while controlling the overall type I error rate.

We construct the discrete conditional error function starting with the conditional type I

error rates of the corresponding Simon design. As the principle for the construction is the

same for all parameter constellations, we confine ourselves to demonstrate the procedure

in detail for the situation (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10). Simon’s minimax design

under this setting is defined by (l1, n1, l2, n2) = (2, 22, 6, 11) and u1 > n1. The conditional

type I error rates CE(k) for a given number of k responses in the first stage (see (3.5) on

page 23) are summarized in Table 4.3 together with the corresponding p-values p1(k). If

CE(k) is used as discrete conditional error function, the resulting test has an actual level

of

α′ =

n1
∑

k=0

CE(k) · PrH0

{

P1 = p1(k)
}

= 0.0409.

To overcome the conservativeness of the classical design, the boundaries CE(k) with

CE(k) 6= 0 and CE(k) 6= 1 can be increased while assuring control of the nominal level.

We considered three ways of increasing the boundaries until equality is reached in (3.3):

(1) increase proportionally to the probability of observing p1 (D1(p1)), (2) distribute the

remaining level α − α′ equally among the conditional error function values (D2(p1)) and

(3) increase of only the smallest conditional error function value unequal to zero (D3(p1)).

D1

(

p1(k)
)

=







CE(k) if CE(k) = 0 or CE(k) = 1

CE(k) +
(α−α′)

PrH0
{P1=p1(k)}

∑
PrH0

{P1=p1(j)}

PrH0
{P1=p1(k)}

else,
(4.4)

where the sum is over all j with CE(j) 6= 0 and CE(j) 6= 1.

D2

(

p1(k)
)

=







CE(k) if CE(k) = 0 or CE(k) = 1

CE(k) +
α−α′

#{CE(k) 6=0 and CE(k) 6=1}

PrH0
{P1=p1(k)}

else,
(4.5)

where # denotes the count function.

D3

(

p1(k)
)

=











CE(k) if CE(k) is not the smallest conditional
error function value unequal to zero

CE(k) + α−α′

PrH0
{P1=p1(k)}

else.
(4.6)

The resulting discrete conditional error functions are also given in Table 4.3.
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Table 4.3.: Flexible version of Simon’s minimax design for the parameter constellation

(π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10)

k PrH0

{

P1 = p1(k)
}

p1(k) CE(k) D1(p1) D2(p1) D3(p1)

0 0.0985 1 0 0 0 0
1 0.2407 0.90152 0 0 0 0
2 0.2808 0.66080 0 0 0 0
3 0.2080 0.37996 0.0185 0.0429 0.0295 0.0625
4 0.1098 0.17193 0.0896 0.1139 0.1104 0.0896
5 0.0439 0.06213 0.3026 0.3270 0.3547 0.3026
6 0.0138 0.01822 0.6862 0.7105 0.8514 0.6862
7 0.0035 0.00439 1 1 1 1
8 0.0007 0.00088 1 1 1 1
...

...
...

...
...

...
...

22 <.0001 <.0001 1 1 1 1

Note that if the remaining level is spent proportionally to the probability of observing p1,

this results in an equal increase of the CE(k) values. For the example we have CE(k) −
D1

(

p1(k)
)

= α−α′
∑

PrH0
{P1=p1(j)}

= 0.0243. In contrast, a discrete conditional error function

as in D2(p1) will result in higher increases for higher CE(k) values, whereas D3(p1) per

construction increases only the smallest conditional error function value unequal to zero.

We have developed an R function for the statistical software package R (R Development

Core Team, 2011) that performs all necessary computations. The full source code is given

in Chapter A.1 and execution of the function is demonstrated in Source code 4.1.

Planning a trial with any of these discrete conditional error functions starts with recruiting

n1 = 22 patients in the first stage. If the sample size of the second stage is kept at n2 = 11,

any of the conditional error functions CE(k), D1(p1), D2(p1) and D3(p2) lead to the same

decision rules as for Simon’s minimax design. Note, however, that this is not generally

true because D1(p1), D2(p1) and D3(p1) may result in designs that are different from the

original one for other parameter settings. Now consider the situation that the sample size

of the second stage is adapted and that a total of k = 3 responses were observed in stage

one. When basing the design on CE(k), the conditional significance level for the second

stage is 0.0185. If D1(p1), D2(p1) or D3(p1) was specified instead, a conditional level of

0.0429, 0.0295 or 0.0625 can be used. If, for example, the sample size is doubled to n2 = 22

and if l = 5 responses were observed in the second stage (p2 = 0.0621), the null hypothesis

can be rejected if the study was planned for D3(p1) but not with CE(k), D1(p1) or D2(p1).

These considerations show that it is advisable to evaluate in the planning phase how the

remaining level α−α′ can be best implemented to lead to favorable design characteristics.
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Source code 4.1: Increase in conditional error function values for Simon’s minimax design

(π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10).

> updatedcef(0.1, ce, nominalalpha=0.05, how="proportionally")

dCEF:

0 0 0 0.01853476 0.08956185 0.3026431 0.6861894 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Updated dCEF:

0 0 0 0.04287696 0.1139041 0.3269853 0.7105316 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Alpha: 0.05

> updatedcef(0.1,ce, nominalalpha=0.05, how="equally")

dCEF:

0 0 0 0.01853476 0.08956185 0.3026431 0.6861894 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Updated dCEF:

0 0 0 0.02952131 0.1103785 0.3546847 0.8514978 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Alpha: 0.05

> updatedcef(0.1,ce, nominalalpha=0.05, how="border")

dCEF:

0 0 0 0.01853476 0.08956185 0.3026431 0.6861894 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Updated dCEF:

0 0 0 0.06248095 0.08956185 0.3026431 0.6861894 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Alpha: 0.05
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Table 4.4.: Sample size needed in the second stage to achieve a conditional power of 0.90

for π∗
1 = 0.25 given a flexible version of Simon’s minimax design for the parameter con-

stellation (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10)

k PrH0

{

P1 = p1(k)
}

PrH∗
1

{

P1 = p1(k)
}

CE(k) D1(p1) D2(p1) D3(p1)

3 0.2080 0.1017 69 59 64 50
4 0.1098 0.1611 45 40 40 45
5 0.0439 0.1933 25 20 20 25
6 0.0138 0.1826 9 9 9 9

A discrete conditional error function similar to the shape of D3(p1) may be chosen if sam-

ple size recalculation should only be performed when few responses occur, while D1(p1)

or D2(p1) may serve as a good choice when the sample size is recalculated irrespective

of the first stage outcome. This can be illustrated by assuming that the minimax design

for (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10) has been chosen in the planning phase but that

it becomes evident after the first stage that the alternative π∗
1 = 0.25 is still of clinical

interest. For this alternative H∗
1 : π = π∗

1, the fixed designs with a discrete conditional

error function D(p1) based on CE(k), D1(p1), D2(p1) and D3(p1) have a power of only

0.75. If in the second stage the sample size is recalculated to achieve a conditional power

PrH∗
1
(Reject H0|k) of at least 0.90, an overall power of 0.88 is achieved for all these ap-

proaches. Note that as the study can also be stopped early, the desired conditional power

is only achieved if the study continues to the second stage. Therefore, recalculation does

not guarantee that the overall power will be equal to the conditional power.

Recalculation based on conditional power is performed by choosing n2 as the minimum

integer where the conditional power is greater than a specified boundary. An R function

capable to perform the necessary calculations is given in the Appendix in Section A.2. For

the considered flexible version of Simon’s minimax design and k = 3 responses in stage

one, application of this function is demonstrated in Source code 4.2. Table 4.4 lists the

resulting sample sizes for CE(k), D1

(

p1(k)
)

, D2

(

p1(k)
)

and D3

(

p1(k)
)

, k ∈ {0, . . . , n1}.
Note that with less than three or more than seven responses in the first stage, the trial is

stopped for futility or efficacy, respectively, and no additional sample size is needed. Due

to the different discrete conditional error functions used, the sample size needed to achieve

a conditional power of 0.90 for π∗
1 = 0.25 varies. The expected sample size EN(π∗

1) = 39.95

for the design based on the conditional error function D1(p1) is smaller as compared to

using CE(k) (EN(π∗
1) = 42.75), D2(p1) (EN(π∗

1) = 40.46) or D3(p1) (EN(π∗
1) = 40.81).

Of particular interest is the comparison between D1(p1) and D2(p1) in Table 4.4. While

D2(p1) allows for a higher local significance level for more than k = 5 responses in the

first stage, this does not translate to a lower sample size in order to achieve a conditional
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Source code 4.2: Sample size recalculation to achieve a conditional power of 0.90 for π∗
1 =

0.25 given a flexible version of Simon’s minimax design for the parameter constellation

(π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10) and k = 3 responses in stage one

> #Design parameters

> pi0 <- 0.1; n1 <- 22; pi1star <- 0.25; CP <- 0.9

>

> #Discrete conditional error function based on CE (k=3)

> recalcn2(pi0,n1,pi1star,0.0185,CP)

Sample size needed in the second stage:

69

>

> #Discrete conditional error function based on D1 (k=3)

> recalcn2(pi0,n1,pi1star,0.0429,CP)

Sample size needed in the second stage:

59

>

> #Discrete conditional error function based on D2 (k=3)

> recalcn2(pi0,n1,pi1star,0.0295,CP)

Sample size needed in the second stage:

64

>

> #Discrete conditional error function based on D3 (k=3)

> recalcn2(pi0,n1,pi1star,0.0625,CP)

Sample size needed in the second stage:

50

power of 0.90 for π∗
1 = 0.25. In case of three responses, the design based on D2(p1) needs

a higher second-stage sample size. Therefore, for this particular recalculation scenario

D1(p1) is uniformly better than D2(p1) with respect to second-stage sample size. This

raises the question whether there exists an optimal discrete conditional error function

that is uniformly more effective than every other discrete conditional error function. We

address this question in Section 4.4 and we demonstrate how to construct these more

efficient phase II designs.

The values of CE(k) and D(p1) can be calculated in a similar way for all designs presented

by Simon (1989). The results are given in Englert and Kieser (2012b). Despite the fact

that Simon’s designs do not explicitly allow early stopping for efficacy after the first stage,
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some of the resulting designs can be stopped early with rejection of H0 after the first stage

due to D(p1) = 1 which occurs whenever k > l2.

4.3.2. Flexible two-stage designs with early stopping for efficacy

There are also situations where it is desirable to terminate a phase II trial early if the

initial response rate is high enough to give evidence of activity (see, e.g. Shuster, 2002;

Mander and Thompson, 2010). Designs that allow stopping also for efficacy have been

proposed by Fleming (1982), Chang et al. (1987) and Mander and Thompson (2010). The

designs by Mander and Thompson (2010) where optimized according to the same criteria

as Simon’s design, i.e., by selecting that combination of (l1, u1, n1, l2, n2) that minimizes

the expected or total sample size. The procedure to construct flexible two-stage designs

with early stopping for efficacy is identical to the preceding section. Discrete conditional

error functions for all designs presented in the article by Mander and Thompson (2010)

are given in Englert and Kieser (2012b).

4.4. Construction of flexible and more efficient phase II

designs

We have shown how by means of discrete conditional error functions that every phase II

trial in oncology can be directly transferred into a flexible design. Additionally, we showed

how the conservativeness of the designs can be overcome by increasing the conditional

error bounds for the second stage. The left panel of Figure 4.1 illustrates for Simon’s

minimax design for (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10) the different discrete conditional

error functions considered in Table 4.3. Vertical and horizontal gray dotted lines represent

the attainable first- and second-stage p-values, respectively, for the given sample sizes

n1 = 22 and n2 = 11. It can be seen that this approach usually results in values of the

conditional error functions that cannot be attained if the originally planned sample size

n2 of Simon’s design is not changed. In this case, the flexible designs based on these

conditional error functions will lead to the same decision rules as for Simon’s design and,

consequently, shows the same characteristics.

In Section 4.1 and 4.2 on the other hand, we were in some cases able to improve on standard

phase II designs by applying combination test methodology to discrete test statistics. The

right panel of Figure 4.1 illustrates for the same parameter constellation the layout of a

flexible two-stage design based on combination test approach minimizing the total sample

size. These designs apparently make better use of the overall significance level and likewise

allowed flexibility. Via the product of the p-values they made direct use of the second-stage
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(a) Discrete conditional error functions for Simon’s

minimax two-stage design as given in Table 4.3

(n1 = 22, n2 = 11)
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(b) Function C of the flexible two-stage design based

on combination test approach minimizing the total

sample size (n1 = 28, n2 = 5)

Figure 4.1.: Comparison of conditional error function approach and combination test ap-

proach (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10). Vertical and horizontal gray dotted lines repre-

sent the attainable first- and second-stage p-values, respectively, for the given sample sizes

n1 and n2.

p-value if the originally planned sample size n2 is not changed. Therefore, the rejection

region defined by the function C matches to attainable second-stage p-values in this case

and guarantees a good exhaustion of the level.

The general framework of discrete conditional error functions will now be combined with

these findings. We construct conditional error functions that match to attainable second-

stage p-values in case the planned second-stage sample size is not changed. This leads to

new and more efficient phase II designs (denoted in the following as proposed method) that

allow flexible design modifications and show at least as good characteristics as standard

designs if no adaptations are performed.

4.4.1. Methodology and search strategy

Given n1 and n2, each p-value attainable in the first and second stage is determined by

(3.1) and (3.2), respectively. Let Pi be the set of attainable p-values in stage i, i = 1, 2.

At c ∈ P2, the distribution function of the uniform distribution equals the distribution

function of the p-value p2. Therefore, a rejection region with critical value c will show the
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Select a suitable first- and second-stage sample size (n1, n2)

Construct a non-decreasing discrete conditional

error function D(p1) ∈ P2, p1 ∈ P1

Check the discrete conditional error function for

control of the type I and II error rate

Select, among all designs satisfying the type I and II error

constraints, a design that satisfies specific optimality criteria

Repeat for each possible

assignment of values of

P2 to D(p1), p1 ∈ P1

Repeat for each

combination of (n1, n2)

within a specified grid

Figure 4.2.: Algorithm for identifying flexible and more efficient phase II designs

same characteristics in both cases. As shown in Theorem 4.1 it is necessary and sufficient

to plan the second stage for uniformly distributed p-values to allow flexibility. Restricting

the values of D(p1) to P2 and exhausting the level α to a maximal extent by selecting

for each p1 ∈ P1 the optimal D(p1) ∈ P2 results in a discrete conditional error function

that fulfills (3.3) and that simultaneously accounts for the discreteness of the second stage.

Thus, the related design will show good exhaustion of the level in a flexible setting while

at the same time exhibit favorable characteristics if no design changes are performed.

According to this idea, the search algorithm proposed to determine the conditional error

function D for a two-stage design testing H0 : π = π0 against H1 : π = π1 and fulfilling

the type I and II error rate constraints α and β is described in Figure 4.2. Note that the

type I error rate is given by (3.3) and the type II error rate by

β′ = 1−
∑

p∈P1

PrH1{P2 ≤ D(p)} · PrH1(P1 = p).

In a comprehensive computer-aided search it is now possible to search for given π0, π1, α

and β for suitable flexible designs that satisfy certain optimality criteria. As demonstrated

in the previous Section 4.3, the phase II designs proposed by Simon (1989), Chang et al.

(1987), Fleming (1982), Shuster (2002) and others can alternatively be represented by

a discrete conditional error function. Therefore, all these designs are contained within

the set of designs supplied by the above algorithm. Consequently, the optimal design

chosen among all feasible designs obtained by the algorithm will show at least as good

characteristics as the classical design optimized with respect to the same criterion.

The main problem of this search strategy is that the number of possible combinations of



4.4. Construction of flexible and more efficient phase II designs 43

D(k) (gray box in Figure 4.2) rapidly increases with the size of the set of possible discrete

conditional error function values |P2| = n2 + 1.

Theorem 4.2. For given first- and second-stage sample sizes, n1 and n2, there exist

(

n1 + n2 + 2

n1 + 1

)

different non-decreasing discrete conditional error functions.

Proof. The set of possible first-stage p-values P1 is of size n1 + 1 and the set of possible

second-stage p-values P2 of size n2 +2, where 0 ∈ P2 is added to represent early stopping

for futility. Each discrete conditional error function is defined by the n1 + 1 values of P2

assigned to each element of P1. Due to its monotony, it can also be represented as the set

of different p-values used out of P2 plus position markers that indicate that the number at

the next position is not smaller than the previous one. The number of discrete conditional

error functions is therefore identical to the number of sets of n1 + 1 items out of n2 + 2

numbers and n1 − 1 position markers (from position 1 to n1 − 1), which is

(

(n2 + 2) + (n1 − 1)

n1 + 1

)

=

(

n1 + n2 + 2

n1 + 1

)

.

Simon’s minimax design for (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10) requires n1 = 22 patients

in the first stage and n2 = 11 patients in the second stage (see Table 2.2). Under this

constellation and with Theorem 4.2 there exist
(

35

23

)

= 8.3 · 108

different discrete conditional error functions for these values of n1 and n2. With a standard

personal computer (Pentium Dual-Core @ 2.60GHz, 3.46 GB Ram) the construction and

evaluation of one discrete conditional error function takes about 3.5·10−5s. The evaluation

of all possible solutions would take about 8 hours. Consequently, it is very time-consuming

to perform a naïve search among a grid of possible combination of n1 and n2 to obtain

the optimal design.

We do not want to restrict the set of valid designs, e.g., by imposing constraints on the

discrete conditional error function values for specific number of responses. This may

leave room for improvement of the resulting designs. Instead, we implement an intelligent

algorithm that uses the branch-and-bound method, which is described in the next section

and which allows an exhaustive and non-restricted search for the optimal design.
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4.4.2. Branch-and-bound algorithm for identifying optimal designs

Branch-and-bound is a general algorithm for finding optimal solutions of one-dimensional

discrete optimization problems. The branch-and-bound approach consists of two steps: a

branching step that splits the problem into similar sub-problems, and a bounding step that

discards branches that cannot lead to optimal solutions of the test problem. A general

description of branch-and-bound can be found in most books on integer optimization (see,

for example, Wolsey, 1998; Nemhauser and Wolsey, 1999).

In our application, the branching recursively defines the layout of the discrete conditional

error function. In the first branching step, the optimization problem is split up into |P2|
sub-problems, where for each sub-problem the discrete conditional error level used for

k = 0 responses in the first stage is set equal to a corresponding value of P2. The next

branching step splits these sub-problems into further sub-problems, where in each of them

the discrete conditional error level used for k = 1 responses is defined. Here, the restriction

D(1) ≥ D(0) is used to ensure monotonicity. This procedure is iterated until the complete

discrete conditional error function is defined.

Within the recursion, the bounding step in the branch-and-bound algorithm discards all

sub-problems that cannot lead to the optimal design. In our application, all sub-problems

are dropped that either cannot control the type I or II error rate or that cannot lead to a

smaller average sample sizes than the designs found so far. Due to the monotonicity of the

discrete conditional error function, the minimal type I error rate, minimal type II error

rate and minimal expected sample size of all following sub-problems can be determined.

After m + 1 branching steps, i.e., when the conditional error function is defined for 0 to

m responses, the minimal type I error rate of all following sub-problems is given by

αmin =
m
∑

k=0

D(k) · PrH0(K = k) +D(m) ·
n1
∑

k=m+1

PrH0(K = k), (4.7)

the minimal type II error rate by

βmin = 1−
[ m
∑

k=0

PrH1

{

P2 ≤ D(k)
}

· PrH1(K = k) (4.8)

+ PrH1

{

P2 ≤ D(m)
}

·
n1
∑

k=m+1

PrH1(K = k)

]

and the minimal average sample size is calculated as

ENmin =
m
∑

k=0

{

n1 + n2 · ID(k) 6=0 ∧ D(k) 6=1

}

· PrH0(K = k) + n1 ·
n1
∑

k=m+1

PrH0(K = k), (4.9)
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where I denotes the indicator function

ID(k) 6=0 ∧ D(k) 6=1 =

{

1 if D(k) 6= 0 and D(k) 6= 1
0 else,

and K denotes the random number of first-stage responses.

Every sub-problem is discarded that shows a value αmin greater than the pre-specified

type I error rate α, a value βmin greater than the type II error rate β, or a value ENmin

that is greater than the smallest average sample size found for all designs considered so

far. Thus, the branch-and-bound algorithm identifies the optimal design minimizing the

average sample size in an efficient way by avoiding to evaluate the characteristics of each

potential solution. This enables a complete search over all possible discrete conditional

error functions (gray box in Figure 4.2).

We developed an R-program that performs all necessary calculations presented here. The

scheme of the layout of the program is given in Source code 4.3. It consists of three

functions, the above mentioned branch- and bound-functions and a launch-routine,

which defines all design parameters, calculates needed variables as, for example, P2 and

initializes the first branching-step. The full code is given in the Appendix in Section A.3.

4.4.3. Resulting optimal designs

The branch-and-bound algorithm presented in the preceding section was used to identify

the discrete conditional error function of flexible and more efficient optimal and minimax

designs. We chose the same parameter constellations as in Simon (1989). For given

(π0, π1, α, β) the search algorithm described in Figure 4.2 on page 42 was applied. The

parts of the search algorithm marked with the gray box were performed within the branch-

and-bound algorithm to speed up the optimization process. As an example, Source code 4.4

invokes the program and displays the output for (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10) with

n1 = 22 and n2 = 11. Here, the program fully evaluates only 2 of the 8.3 · 108 possible

discrete conditional error functions within the search for the optimal flexible phase II

design. Therefore, only a tiny fraction of the total number of possible designs needs to be

checked and the results are displayed immediately. This procedure was repeated to every

combination of first- and second-stage sample size (n1, n2) with n1 + n2 ≤ 120 and every

combination of design parameters considered. The allowed maximum sample size of 120

thereby lies way above the range of total sample sizes in the designs by Simon making it

very unlikely that this restriction influenced the identification of optimal designs. Among

all discrete conditional error functions found for each combination of (n1, n2) the ones

minimizing the expected (optimal design) or total sample size (minimax design) were

selected. If different minimax designs had the same total sample size, the one minimizing
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Source code 4.3: Scheme of the implemented branch-and-bound approach

#LAUNCH

launch <- function(pi0,pi1,nominalalpha,nominalbeta,n1,n2min,

n2max){

#Calculation of variables

P_2

#Initialize first branching-step

branch(0,1)

#Print final results

}

#BRANCH

branch <- function(k,j){

#Until here D is recursively defined for 1,...,k with

#D(k) equal to the j-th element of P_2, i.e., P_2[j]

if (k < n1){

#Deeper into the tree

for (P_2[i] >= P_2[j]){

D(k+1) = P_2[i] #Define D(k+1)

if(bound(k+1,i) = TRUE){ #Bounding

branch(k+1,i) #Branching

}

}

}

else{

#Output solution if D(k) is defined completely

}

}

#BOUND

bound <- function(k,j)){

if(alpha_min > nominalalpha) {FALSE}

if(beta_min > nominalbeta) {FALSE}

if(en_min > en) {FALSE}

else {TRUE} #Further branching only if no restraints are

fulfilled

}
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Source code 4.4: Invoking and output of the branch-and-bound approach

> launch(0.1,0.3,0.05,0.10,22,11)

Searching optimal solutions:

[1] 26.13126

[1] 1 1 1 9 10 11 12 13 13 13 13 13 13 13 ... 13

[1] 25.97917

[1] 1 1 1 9 10 11 13 13 13 13 13 13 13 13 ... 13

Search completed. In total, 2 of 834451800 combinations were

evaluated.

Optimal D(k):

0 0 0 0.01853476 0.08956185 0.3026431 1 1 1 1 1 1 1 1 ... 1

Optimal n_2(k):

22 22 22 33 33 33 22 22 22 22 22 22 22 22 22 ... 22

Design characteristics:

Alpha: 0.04519655

Beta: 0.09465674

EN_p0: 25.97917

EN_p1: 25.22021

the expected sample size was selected. In case of optimal designs with identical expected

sample sizes, the one with the smaller total sample size was chosen.

Figure 4.3 shows the resulting discrete conditional error function for the parameter choice

of the example (π0, π1, α, β) = (0.1, 0.3, 0.05, 0.10). It can be seen how, by construction,

the conditional error function matches to attainable second-stage p-values and therefore

will guarantee an optimal exhaustion of the level if the originally planned sample size n2

is not changed. With n1 = 21 and n2 = 11 the total sample size of the identified minimax

design is also smaller compared to Simon’s minimax design by one patient.

Further design characteristics for a variety of parameter settings are given in Table 4.5, 4.6,

B.3 and B.4. For the purpose of comparison with classical phase II designs, the total and
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Figure 4.3.: Discrete conditional error function resulting from the proposed flexible design

(n1 = 21, n2 = 11). Vertical and horizontal gray dotted lines represent the attainable first-

and second-stage p-values, respectively, for the given sample sizes n1 and n2.

expected sample size for designs without (Simon, 1989) and with (Mander and Thompson,

2010) early stopping for efficacy, which are optimized with respect to the same criteria, are

given additionally. The corresponding discrete conditional error functions are presented

in Table 4.7, 4.8, B.5 and B.6. All computations were done using R.

To illustrate how to read these Tables, consider, for example, the optimal design identified

for (π0, π1, α, β) = (0.3, 0.5, 0.05, 0.10). According to Table 4.7, n1 = 22 patients need to be

enrolled in the first stage. Depending on the first-stage p-value, the following conditional

significance levels are used for the second part of the trial:

D(p1) =















































0 if P1 ∋ p1 > 0.3287
0.061 if p1 = 0.3287
0.113 if p1 = 0.1865
0.302 if p1 = 0.0916
0.302 if p1 = 0.0387
0.436 if p1 = 0.0140
0.581 if p1 = 0.0043
1 if P1 ∋ p1 < 0.0043

With a p-value p1 greater than 0.3287 or smaller than 0.0043 the trial is stopped for futility

or efficacy, respectively. In all other cases the trial continues with the second stage for
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Table 4.5.: Design characteristics of optimal flexible designs (π1 − π0 = 0.2)

Proposed

method Simon (1989)

Mander and

Thompson (2010)
π0 π1 α β n EN(π0) n EN(π0) n EN(π0)

0.05 0.25 0.05 0.20 21 11.17 17 11.95 17 11.89
0.10 30 16.75 30 16.76 30 16.75

0.1 0.3 0.05 0.20 29 14.98 29 15.01 29 14.98
0.10 41 22.19 35 22.53 41 22.19

0.2 0.4 0.05 0.20 43 20.54 43 20.58 43 20.54
0.10 53 30.05 54 30.43 54 30.36

0.3 0.5 0.05 0.20 46 23.52 46 23.63 46 23.63
0.10 59 34.12 63 34.72 63 34.69

0.4 0.6 0.05 0.20 46 24.49 46 24.52 46 24.49
0.10 66 35.80 66 35.98 66 35.93

0.5 0.7 0.05 0.20 43 23.40 43 23.50 43 23.50
0.10 59 33.47 61 34.01 59 33.47

0.6 0.8 0.05 0.20 37 20.42 43 20.48 43 20.48
0.10 52 28.99 53 29.47 53 29.29

0.7 0.9 0.05 0.20 27 14.82 27 14.82 27 14.82
0.10 36 20.92 36 21.23 36 21.13

Table 4.6.: Design characteristics of minimax flexible designs (π1 − π0 = 0.2)

Proposed

method Simon (1989)

Mander and

Thompson (2010)
π0 π1 α β n EN(π0) n EN(π0) n EN(π0)

0.05 0.25 0.05 0.20 16 13.76 16 13.83 16 13.76
0.10 24 20.42 25 20.36 25 18.55

0.1 0.3 0.05 0.20 23 19.20 25 19.51 24 20.30
0.10 32 27.95 33 26.18 33 23.96

0.2 0.4 0.05 0.20 32 23.24 33 22.25 32 24.93
0.10 44 33.43 45 31.23 44 35.68

0.3 0.5 0.05 0.20 36 29.32 39 25.69 36 30.68
0.10 50 41.06 53 36.62 50 42.47

0.4 0.6 0.05 0.20 39 27.14 39 34.44 39 34.33
0.10 53 42.68 54 38.06 54 38.03

0.5 0.7 0.05 0.20 37 26.90 37 27.74 37 26.90
0.10 51 37.74 53 36.11 51 41.14

0.6 0.8 0.05 0.20 33 23.22 35 20.77 33 23.97
0.10 45 31.52 45 35.90 45 33.30

0.7 0.9 0.05 0.20 25 18.05 27 14.82 26 23.11
0.10 32 22.66 32 22.66 32 22.66
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which the corresponding conditional significance level can be used. According to Table 4.5,

if n2 = 37 patients are enrolled in the second stage (n = 59), i.e., if no adaptations are

performed, the expected sample size amounts to 34.12. For this example, Simon’s optimal

design is given by (l1, n1, l2, n2) = (8, 24, 24, 39), u1 > n1, with an expected sample size of

34.72. An optimal design with early stopping for efficacy (Mander and Thompson, 2010) is

defined by (l1, u1, n1, l2, n2) = (8, 15, 24, 24, 39) and shows an average sample size of 34.69

patients. Thus, the maximum and the expected sample size of the new proposed design

is by 4 patients and 0.60 patients less, respectively, as compared to the corresponding

Simon’s optimal design, and by 4 and 0.57 less if an optimal design with early stopping

for efficacy is used.

In summary, the proposed optimal designs outperform the designs by Simon and by Man-

der and Thompson in 21 of the considered 34 cases with regard to expected sample size

and the minimax designs with respect to the total or expected sample size in 28 of 34

cases.

This benefit has to be paid with the side-effect, that the order of responses occurring

throughout the trial may influence the test decision. In the given example, 10 responses

(p1 = 0.0916) in the first stage and 13 (p2 = 0.302) responses in the second stage, i.e., a

total of 23, lead to rejection of the null hypothesis, whereas with 9 (p1 = 0.1865) responses

observed in the first stage a total of 24 responses are needed to reject H0.



By a small sample, we may judge of the whole piece.

(Miguel de Cervantes from Don Quixote)

5
Optimal Adaptive Designs for Phase II

Trials in Oncology

In all designs developed so far, the second-stage sample size of the initially planned design

does not depend on the number of responses observed in the interim analysis. It can,

however, be changed throughout the trial in a flexible way. Per-design adaptive designs,

which allow the sample size at the second stage to depend on the results from the first

stage, may result in even more effective phase II designs than presented in the preceding

Chapter 4, if there are no derivations from the planned scheme.

First attempts to construct adaptive designs for phase II oncology trials were made by Lin

and Shih (2004) and Banerjee and Tsiatis (2006). To cope with uncertainty concerning

the choice of an adequate response rate π1, Lin and Shih presented a design where, based

on the results of the interim analysis, the second stage of the study is powered for either

a skeptic or an optimistic target response rate. Therefore, depending on the number

of responses in the first stage, two different choices for the sample size of the second

stage are possible. Banerjee and Tsiatis used a Bayesian decision-theoretic framework to

construct optimal adaptive two-stage designs. They minimized an expected loss function

by backwards induction to find adaptive two-stage designs with specified type I and type II

error rates for the original test problem that minimize the expected sample size under the

null hypothesis. Using this Bayesian decision-theoretic construct, the approach provides

for each number of responses K observed in the n1 patients of the first stage the optimally

chosen second-stage sample size n2 and the corresponding critical boundary. However,

it remains unclear what restrictions the applied Bayesian framework constitutes on the

resulting designs. The authors state:
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The designs we present may not necessarily be the optimal two-stage sequential

design; i.e. the design which minimizes the expected sample size at π = π0

subject to the type I and type II error constraints. However, we would expect

such designs to be very close to optimal . . . (Banerjee and Tsiatis, 2006)

An obvious way to identify optimal adaptive designs in the sense of Banerjee and Tsiatis

is to apply an exhaustive search over all combinations of second-stage sample sizes and

associated decision boundaries for each possible number of responses observed in the first

stage. However, if the interplay between critical boundaries and sample sizes is not taken

into account, this approach may provide contra-intuitive designs: For two study results

with identical outcome in the second stage, only the result with fewer responses in the

first stage, i.e., the less favorable outcome, may lead to a rejection of the null hypothesis.

Additionally, due to the huge number of possible designs, a naïve exhaustive search over

all combinations is only feasible for very small sample sizes that are even considerably

below those usually applied in phase II designs.

We now show how to modify the discrete conditional error function representation of

phase II designs proposed in Chapter 4 to allow for an exhaustive search for identifying

optimal adaptive phase II designs. To search for the optimal design we apply the branch-

and-bound algorithm introduced in Section 4.4.2. The adapted discrete conditional error

function representation and the search algorithm are described in the following Section 5.1.

Section 5.2 gives the results and compares our method to the approach proposed by Baner-

jee and Tsiatis (2006).

5.1. Modified discrete conditional error function

methodology and search strategy

Recall that we consider the test problem H0 : π = π0 versus H1 : π = π1, π1 > π0, where

the response rate π0 represents insufficient activity while π1 indicates sufficient efficacy

to move the therapy to phase III. To present the proposed method, we use the same

notation as in Banerjee and Tsiatis (2006). An adaptive two-stage design is represented

by
{

n1, n2(K), l2(K)
}

, where n1 denotes the number of patients in the first stage, n2(K)

the number of patients in the second stage, which may depend on the random number or

responses K observed in the first stage, and l2(K) the decision boundary to reject the null

hypothesis, which may also depend on K and therefore on n2(K). The null hypothesis is

rejected if the total number of responses exceeds l2(K). Note that for all K with n2(K) = 0

the trial is stopped after the first stage.

In the following, we use the conditional error function representation of phase II designs to
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construct suitable designs. We will apply an exhaustive search over all suitable designs to

find the corresponding optimal one, i.e., the one minimizing the average sample size under

the null hypothesis. Additionally, we demonstrate that the designs considered by Banerjee

and Tsiatis form a subgroup of the designs considered in our approach. Therefore, our

approach will show at least equal but potentially more favorable design characteristics.

The concept of discrete conditional error functions was introduced in Chapter 4. Given

a representation
{

n1, n2(K), l2(K)
}

of a per-design adaptive two-stage design, the cor-

responding discrete conditional error function representation can be obtained similar to

fixed designs by setting D(k) = 1 − B
{

l2(k) − k;π0, n2(k)
}

for k ∈ {0, . . . , n1} (see (3.5)

on page 23). In particular, the designs by Simon (1989), Lin and Shih (2004) and Banerjee

and Tsiatis (2006) can be characterized in such a way. The overall type I error rate of the

design is given by
n1
∑

k=0

D(k) · PrH0(K = k). (5.1)

Within the conditional error function framework, the null hypothesis is rejected after

the second stage if the second-stage p-value of the applied binomial test p2,n2(k)(l) :=

1 − B
{

l − 1;π0, n2(k)
}

is equal to or falls below D(k). Here, l denotes the number of

responses observed in the second stage with sample size n2(k). In terms of the number of

responses, the null hypothesis is rejected if the total number of observed responses after

stage two exceeds the boundary l2(k). Hence, the null hypothesis is rejected if one of the

following inequalities holds true:

l + k > l2(k)

⇔ l − 1 ≥ l2(k)− k

⇔ 1−B
{

l − 1;π0, n2(k)
}

≤ 1−B
{

l2(k)− k;π0, n2(k)
}

⇔ p2,n2(k)(l) ≤ D(k)

The equivalence of the first and last inequality shows that decision making based on

the discrete conditional error function is identical to the classical evaluation of phase II

designs based on boundaries formulated in terms of the observed number of responses.

To construct optimal adaptive phase II designs, it is therefore sufficient to consider the

discrete conditional error rate representation.

For any specified n2, the attainable values of D(k), i.e., the possible conditional type I

error rates, are given by

P2,n2 :=
{

1−B(x− 1;π0, n2)
∣

∣ x ∈ {0, . . . , n2}
}

. (5.2)

This set contains for each possible critical boundary the corresponding value of D(k). For a

given range of second-stage sample sizes n2 ∈ N2 let P2 =
⋃

n2∈N2
P2,n2 ∪{0, 1} denote the
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possible values of the discrete conditional error function. The values 0 and 1 were added

representing stopping after the first stage for futility or efficacy, respectively. The key idea

is now that an exhaustive search for optimal adaptive designs over all combinations of

second-stage sample sizes n2(K) and associated decision boundaries l2(K) is equivalent to

a search over the corresponding discrete conditional error functions, i.e., over D(K) ∈ P2.

As guaranteed by the construction above, the set P2 simultaneously accounts for the

second-stage sample size and the decision boundary. Therefore, optimization must be done

only in a one-dimensional set P2 and not in a two-dimensional array of all combinations

of n2(K) and l2(K). This advantage of discrete conditional error functions will be utilized

later in the search strategy as then the branch-and-bound algorithm can be applied.

It is a natural restriction to consider only sequences D(k) that are non-decreasing in

k ∈ {0, . . . , n1}. This restriction ensures that a higher conditional type I error level is

associated with more responses observed in the first stage. In the special case where

n2 does not depend on the first-stage outcome, this restriction implies that with fewer

responses in the first stage fewer responses in the second stage cannot lead to a rejection

of the null hypothesis. This condition is satisfied for all phase II designs presented in the

literature and excludes contra-intuitive designs as those mentioned at the beginning of

this chapter.

The proposed algorithm for identifying optimal adaptive phase II designs with fixed max-

imum type I error rate α and maximum type II error rate β is described in Figure 5.1.

Note that the type II error rate is given by

β′ = 1−
n1
∑

k=0

PrH1

{

P2,n2(k) ≤ D(k)
}

· PrH1(K = k), (5.3)

with P2,n2(k) being the random second-stage p-value, and that the average sample size

under the null hypothesis is given by

EN(π0) =

n1
∑

k=0

{

n1 + n2(k)
}

· PrH0(K = k). (5.4)

As the designs by Simon (1989), Lin and Shih (2004) and Banerjee and Tsiatis (2006)

have a discrete conditional error function representation, they are included in the set of

designs considered by the above-presented search strategy. The optimal design identified

by the proposed algorithm will therefore necessarily show at least as good characteristics

as these designs.

Similar to the non-adaptive case, the main problem of this search strategy is that the

number of possible combinations of D(k) (gray box in Figure 5.1) rapidly increases with
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Select boundaries for the minimum and maximum second-stage

sample size, n2,min and n2,max

Generate the corresponding set P2

Select a suitable first-stage sample size n1

Construct a non-decreasing sequence D(k) ∈ P2,

k ∈ {0, . . . , n1}

Check the discrete conditional error function for

control of the type I and II error rate

Select, among all designs satisfying the type I and II error

constraints, the optimal design minimizing the average sample

size under the null hypothesis

Repeat for every possible

non-decreasing discrete

conditional error function

Repeat for a range

of suitable first-

stage sample sizes

Figure 5.1.: Algorithm for identifying optimal adaptive phase II designs

the size of the set of possible discrete conditional error function values |P2|. Similar to

Theorem 4.2 on page 43, it can be shown that for a fixed value of n1 there exist

(

n1 + |P2|
n1 + 1

)

different non-decreasing discrete conditional error functions. As this design allows a de-

pendency of the second-stage sample size on the number of responses in the first stage

and therefore |P2| ≫ 1, it is not feasible to perform a naïve search among the entire

set of designs. As a numerical example, we consider the test problem (π0, π1, α, β) =

(0.1, 0.3, 0.05, 0.10) with n1 = 22 and the specification that the second-stage sample size

might vary in the range of n2,min = 1 to n2,max = 15. These parameter choices result in

|P2| = 137 and therefore in 3.12 · 1027 different discrete conditional error functions. With

this multitude of design variants, it is not feasible to simply check each of these designs

for type I and II error rate control and to select the optimal one.

In contrast to preceding work, we do not want to restrict the set of valid designs, e.g.,

by imposing constraints on the second-stage sample size using frequentist or Bayesian

methods, which still leave a room for improvement of the resulting designs. Instead, we
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implemented as in Section 4.4 the branch-and-bound method, which allows an exhaus-

tive and non-restricted search for the optimal design. By this, our algorithm inevitably

identifies the optimal adaptive two-stage design. Note that, due to the discreteness of

the binomial distribution, the optimal design may not show a complete exhaustion of the

type I and II error rate, but is optimal in the sense that every other design that can be

represented by {n1, n2(K), l2(K)} has an equal or higher average sample size under the

null hypothesis. We will see later that the optimal designs found here have type I and II

error rates very close to nominal level.

From a methodological point of view, the only difference between the setting for the fixed

size scenario in Section 4.4 and the application to adaptive designs here is the layout of

the set |P2|. In the first case, this set defines the decision boundaries for the second-stage

sample size. In the latter scenario, the set P2 simultaneously accounts for the second-stage

sample size and the decision boundary. In both cases, however, optimization must be done

only in this one-dimensional set P2. Therefore, the branch-and-bound algorithm can be

directly used. The conceptional layout and implementation of the algorithm is the same

as in Section 4.4: the branching recursively defines the layout of the discrete conditional

error function and the bounding step algorithm discards all sub-problems that cannot lead

to the optimal design. For the bounding algorithm, calculation of the minimal type I error

rate is given in (4.7). Note, however, that by (5.2) with a value chosen for D(k) ∈ P2

the second-stage sample size n2(k) corresponding to this value is also determined. The

minimal type II error rate and average sample size are therefore now calculated as

βmin = 1−
[ m
∑

k=0

PrH1

{

P2,n2(k) ≤ D(k)
}

· PrH1(K = k) +

n1
∑

k=m+1

PrH1(K = k)

]

and

ENmin =
m
∑

k=0

{

n1 + n2(k)
}

· PrH0(K = k) + n1 ·
n1
∑

k=m+1

PrH0(K = k).

The R-program given in the Appendix in Section A.3 is capable to perform all necessary

calculations. For the example above, Source code 5.1 invokes the program and displays

the output. The program fully evaluates only 3889 of the 3.12 · 1027 possible discrete

conditional error functions within the search for the optimal adaptive phase II design.

Therefore, only a tiny fraction of the total number of possible designs needs to be checked

resulting in a significant gain in performance. For this parameter setting this resulted in

a computation time of only a few seconds. For other parameter settings, with a higher

range of second-stage sample sizes and greater |P2|, the computational effort still becomes

impractically large. Restricting the set of discrete conditional error function values P2

solves this problem elegantly. This is due to the fact that from a practical point of view it is

logical to consider besides zero and one only discrete conditional error function values that
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Source code 5.1: Invoking and output of the branch-and-bound approach for adaptive de-

signs

> launch(0.1,0.3,0.05,0.10,22,1,15)

Searching optimal solutions:

[1] 23.95059

[1] 1 1 1 1 94 110 122 122 122 122 122 122 122 ... 122

...

[1] 23.95059

[1] 1 1 1 1 94 110 122 122 122 122 122 137 137 ... 137

[1] 23.95057

[1] 1 1 1 1 94 110 122 122 122 122 137 137 137 ... 137

[1] 23.95045

[1] 1 1 1 1 94 110 122 122 122 137 137 137 137 ... 137

[1] 23.94972

[1] 1 1 1 1 94 110 122 122 137 137 137 137 137 ... 137

[1] 23.94620

[1] 1 1 1 1 94 110 122 137 137 137 137 137 137 ... 137

[1] 23.93238

[1] 1 1 1 1 94 110 137 137 137 137 137 137 137 ... 137

Search completed. In total, 3889 of 3.115117e+27 combinations

were evaluated.

Optimal D(k):

0 0 0 0 0.1108700 0.4153709 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Optimal n_2(k):

22 22 22 22 34 36 22 22 22 22 22 22 22 22 22 22 22 22 ... 22

Design characteristics:

Alpha: 0.04863099

Beta: 0.09952334

EN_p0: 23.93238

EN_p1: 25.24193
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are away from zero or one by a certain small amount. Values smaller than α correspond,

for example, to situations where it is, with respect to patient resources, better to start

a new trial than to continue with the current one with a possibly modified second stage.

On the other hand, values close to one constitute situations, where only a few patients

suffice to reach sufficient statistical power for the next stage. In our applications a cutoff

value of α/2 and 1 − α/2, respectively, has proven to lead to situations that are feasible

from the computational aspect and logical with respect to these considerations. As we

will see in the next section all resulting optimal adaptive designs show discrete conditional

error function values far away from these cutoff values. Therefore, this restriction did not

influence the optimization process.

5.2. Resulting optimal adaptive designs

We compare the adaptive two-stage designs developed by Banerjee and Tsiatis (2006) with

our optimal two-stage adaptive designs found by the branch-and-bound algorithm. Addi-

tionally, the characteristics of Simon’s designs (1989) are given for comparison. Banerjee

and Tsiatis developed both unrestricted and restricted designs (where the total maximum

sample size n1 + n2,max does not exceed Simon’s maximum sample size by more than

10%). As in practical applications it is reasonable to restrict the maximum total sample

size and to allow for a fair comparison, we only consider designs with the same restraints

on the maximum sample size as in Banerjee and Tsiatis’ restricted designs. Otherwise, no

restrictions on the second-stage sample size were made, i.e., every n2(K) between 1 and

n2,max was allowed. For the first-stage sample size n1, we searched for the optimal solution

within a range of ±4 centered at the corresponding first-stage sample size of the Banerjee

and Tsiatis design. All designs aim at minimizing the expected sample size under the null

hypothesis. The resulting design characteristics are summarized in Table 5.1.

The improvements in terms of average sample sizes that can be achieved by application

of the branch-and-bound algorithm as compared to the method by Banerjee and Tsiatis

are moderate with mean savings in average sample size of 0.32 (range 0− 1.15). However,

taking into account that Simon’s designs were deemed to be optimal for decades and

that Banerjee and Tsiatis could further improve them by the adaptive approach, the

additional decrease in sample size that can be achieved by applying the branch-and-bound

algorithm may be regarded as remarkable. For example, for the parameter constellation

(π0, π1, α, β) = (0.20, 0.35, 0.05, 0.20) the expected sample sizes for the Simon, the Banerjee

and Tsiatis and the proposed design are 35.37, 34.77 and 34.05, respectively. The mean

reduction in expected sample size achieved for the designs presented in Table 5.1 by

application of the proposed method as compared to Simon’s designs amounts to 1.01
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Table 5.1.: Comparison of average sample size under the null hypothesis EN(π0) of the

optimal designs by Simon (S), the designs by Banerjee and Tsiatis (BT), and the proposed

optimal adaptive designs found by the branch-and-bound algorithm (BB)

π0 π1 α β EN(π0)S EN(π0)BT EN(π0)BB

0.05 0.25 0.05 0.2 11.89 11.03 11.03
0.1 16.75 16.67 16.40

0.20 0.05 0.2 17.60 17.45 17.45
0.1 26.60 25.83 25.83

0.10 0.30 0.05 0.2 15.01 15.01 14.72
0.1 22.50 22.29 21.70

0.25 0.05 0.2 24.65 24.65 24.41
0.1 36.82 36.24 35.13

0.20 0.40 0.05 0.2 20.58 20.18 19.80
0.1 30.43 29.21 29.02

0.35 0.05 0.2 35.37 34.77 34.05
0.1 51.45 50.23 50.07

0.30 0.50 0.05 0.2 23.63 23.21 23.02
0.1 34.72 33.78 33.31

0.45 0.05 0.2 41.71 40.80 40.61
0.1 60.77 58.60 58.56

0.40 0.60 0.05 0.2 24.52 24.43 24.09
0.1 35.98 34.95 34.48

0.55 0.05 0.2 44.93 43.32 43.20
0.1 63.96 62.88 62.85

0.50 0.70 0.05 0.2 23.50 23.08 23.03
0.1 34.01 33.45 32.95

0.65 0.05 0.2 43.72 42.20 42.15
0.1 62.28 60.90 60.77

0.60 0.80 0.05 0.2 20.48 20.08 19.72
0.1 29.47 29.08 28.15

0.75 0.05 0.2 39.35 39.01 37.86
0.1 55.60 54.35 54.30

0.70 0.90 0.05 0.2 14.82 14.82 14.82
0.1 21.23 20.89 20.42

0.85 0.05 0.2 30.29 29.62 29.16
0.1 43.40 41.59 41.57

0.80 0.95 0.05 0.2 17.72 17.56 17.56
0.1 24.45 24.38 23.75
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(range 0 − 2.21). In view of the high number of phase II trials performed worldwide,

application of the new method may thus lead to a considerable saving of patients. This

gain has not to be paid with an increased loss in power or conservativeness. In contrast,

the type I and type II error rates of the new optimal adaptive designs are on average closer

to the nominal values than for the other two design variants. For all designs depicted in

Table 5.1, the mean undershooting of the actual type I error rate to the nominal level

α = 0.05 amounts to 0.0016, 0.0012 and 0.0004 for Simon’s designs, Banerjee and Tsiatis’

designs, and the proposed per-design adaptive designs, respectively, while the actual type

II error rate falls below the nominal level by 0.0020, 0.0009 and 0.0002 for β = 0.1 and

by 0.0028, 0.0023 and 0.0005 for β = 0.2. Note that there is a typo in Table I of the

publication of Banerjee and Tsiatis concerning the expected sample size for the design

parameter constellation (π0, π1, α, β) = (0.70, 0.90, 0.05, 0.20).

The layouts of the proposed designs are presented in Table 5.2. For each design specifi-

cation and number of responses in the first stage, the corresponding optimal second-stage

sample size and the discrete conditional error function value are given. For convenience,

we added the corresponding critical boundary l2(k).

As could be expected, the new designs are generally similar to those given by Banerjee

and Tsiatis, but there exist also marked differences for some parameter constellations.

A possibly counter-intuitive feature of the proposed optimal adaptive design is that initially

the second-stage sample size increases with the number of responses observed in the first

stage. Only when the number of observed responses exceeds a certain value, the second-

stage sample size slightly decreases in most cases. A similar pattern occurred for the

designs given in the work by Banerjee and Tsiatis, where here the sample size for the

second stage does not decrease with increasing number of observed responses for any

of the reported designs. The authors stated that this observed sample size pattern is

dictated by the Bayesian decision rule applied to obtain the optimal adaptive design. As,

however, our approach does not use this rule, we can conclude from our calculations that

this pattern is not caused by the applied loss function, but is due to the optimization

process and the discreteness of the applied test statistic. The total sample size associated

with more responses observed in the interim analysis, i.e., with situations that are rather

unlikely under the null hypothesis, has a less pronounced influence on the average sample

size under H0. It appears that reducing the second-stage sample size for fewer responses

(which are more likely under H0) is more favorable, even at the price of a higher stage two

sample size in case of a higher number of responses observed in stage one.

All results given so far aim at minimization of the average sample size under the null

hypothesis with the restriction that the total maximum sample size n1 + n2,max does not

exceed Simon’s maximum sample size by more than 10%. This restriction is not necessary
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Table 5.2.: Layout of proposed optimal adaptive designs for (a) π1−π0 = 0.2 and β = 0.2;

(b) π1 − π0 = 0.2 and β = 0.1; (c) π1 − π0 = 0.15 and β = 0.2; (d) π1 − π0 = 0.15 and

β = 0.1. For all designs α = 0.05 was specified.

(a)

π0 = 0.05

n1 = 8, n2,max = 10
k n2 D(k) l2(k)

0 0 0 0
1 9 .071 2
2 10 .401 2
≥3 0 1 0

π0 = 0.1

n1 = 11, n2,max = 21
k n2 D(k) l2(k)

≤1 0 0 0
2 11 .090 4
3 17 .238 5
4 11 .686 4
≥5 0 1 0

π0 = 0.2

n1 = 11, n2,max = 36
k n2 D(k) l2(k)

≤2 0 0 0
3 17 .106 8
4 30 .129 12
5 34 .227 13
6 35 .255 14
7 32 .465 13
≥8 0 1 0

π0 = 0.3

n1 = 13, n2,max = 37
k n2 D(k) l2(k)

≤4 0 0 0
5 23 .120 14
6 35 .135 19
7 37 .193 20
8 36 .263 20
9 37 .434 20

≥10 0 1 0

(b)

n1 = 11, n2,max = 22
k n2 D(k) l2(k)

0 0 0 0
1 10 .086 2
2 22 .095 4
3 15 .537 3
≥4 0 1 0

n1 = 14, n2,max = 25
k n2 D(k) l2(k)

≤1 0 0 0
2 16 .068 5
3 22 .171 6
4 25 .236 7
5 23 .408 7
6 15 .794 6
≥7 0 1 0

n1 = 20, n2,max = 39
k n2 D(k) l2(k)

≤4 0 0 0
5 16 .082 10
6 30 .129 14
7 33 .200 15
8 39 .241 17
9 39 .376 17

≥10 0 1 0

n1 = 22, n2,max = 47
k n2 D(k) l2(k)

≤7 0 0 0
8 25 .098 18
9 38 .137 23
10 46 .191 26
11 45 .254 26
12 46 .403 26
13 46 .530 26
14 10 .972 14
≥15 0 1 0

(c)

n1 = 10, n2,max = 21
k n2 D(k) l2(k)

0 0 0 0
1 18 .058 3
2 21 .283 3
3 20 .642 3
≥4 0 1 0

n1 = 14, n2,max = 33
k n2 D(k) l2(k)

≤1 0 0 0
2 22 .062 6
3 30 .175 7
4 33 .230 8
5 20 .608 6
6 16 .815 6
7 24 .920 7
≥8 0 1 0

n1 = 20, n2,max = 58
k n2 D(k) l2(k)

≤4 0 0 0
5 28 .090 13
6 39 .141 16
7 57 .152 21
8 58 .260 21
9 55 .420 20
10 50 .556 19
≥11 0 1 0

n1 = 25, n2,max = 63
k n2 D(k) l2(k)

≤8 0 0 0
9 41 .079 25
10 48 .164 27
11 58 .186 31
12 61 .266 32
13 63 .325 33
14 63 .428 33
≥15 0 1 0

(d)

n1 = 20, n2,max = 23
k n2 D(k) l2(k)

≤1 0 0 0
2 22 .095 4
3 23 .321 4
4 23 .693 4
≥5 0 1 0

n1 = 23, n2,max = 50
k n2 D(k) l2(k)

≤2 0 0 0
3 17 .083 6
4 42 .121 10
5 47 .186 11
6 47 .329 11
7 50 .384 12
8 50 .750 11
≥9 0 1 0

n1 = 33, n2,max = 58
k n2 D(k) l2(k)

≤7 0 0 0
8 41 .102 19
9 58 .103 24
10 58 .169 24
11 58 .260 24
12 58 .373 24
13 57 .473 24
14 58 .630 24
15 35 .939 18
≥16 0 1 0

n1 = 39, n2,max = 81
k n2 D(k) l2(k)

≤13 0 0 0
14 27 .080 25
15 48 .100 33
16 64 .122 39
17 75 .157 43
18 81 .217 45
19 81 .293 45
20 75 .394 43
21 81 .571 43
≥22 0 1 0
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Table 5.2.: continued

(a)

π0 = 0.4

n1 = 16, n2,max = 35
k n2 D(k) l2(k)

≤7 0 0 0
8 24 .114 20
9 32 .165 24
10 35 .300 25
11 34 .373 25
12 34 .509 25
13 11 .970 14
14 15 .973 16
≥15 0 1 0

π0 = 0.5

n1 = 15, n2,max = 31
k n2 D(k) l2(k)

≤8 0 0 0
9 23 .105 23
10 30 .181 27
11 31 .237 28
12 29 .356 27
13 19 .676 21
14 18 .881 20
15 4 .938 15

π0 = 0.6

n1 = 10, n2,max = 37
k n2 D(k) l2(k)

≤6 0 0 0
7 21 .096 22
8 31 .143 29
9 31 .245 29
10 34 .354 31

(b)

n1 = 22, n2,max = 51
k n2 D(k) l2(k)

≤9 0 0 0
10 21 .085 21
11 35 .114 28
12 45 .144 33
13 50 .234 35
14 51 .272 36
15 49 .393 35
≥16 0 1 0

n1 = 20, n2,max = 47
k n2 D(k) l2(k)

≤10 0 0 0
11 19 .084 23
12 32 .108 31
13 47 .121 40
14 44 .226 38
15 47 .280 40
16 46 .329 40
17 43 .500 38
18 35 .750 33
≥19 0 1 0

n1 = 18, n2,max = 39
k n2 D(k) l2(k)

≤11 0 0 0
12 18 .094 25
13 32 .116 35
14 38 .186 39
15 36 .262 38
16 36 .384 38
17 35 .436 38
18 0 1 0

(c)

n1 = 28, n2,max = 65
k n2 D(k) l2(k)

≤12 0 0 0
13 37 .108 31
14 52 .148 38
15 62 .169 43
16 65 .262 44
17 64 .312 44
18 65 .446 44
19 63 .568 43
≥20 0 1 0

n1 = 25, n2,max = 66
k n2 D(k) l2(k)

≤13 0 0 0
14 37 .094 36
15 51 .131 44
16 63 .157 51
17 65 .229 52
18 63 .307 51
19 63 .401 51
20 60 .551 49
21 14 .971 24
≥22 0 1 0

n1 = 24, n2,max = 49
k n2 D(k) l2(k)

≤15 0 0 0
16 36 .090 41
17 45 .143 47
18 49 .184 50
19 49 .272 50
20 48 .422 49
21 45 .564 47
≥22 0 1 0

(d)

n1 = 45, n2,max = 69
k n2 D(k) l2(k)

≤19 0 0 0
20 38 .078 39
21 57 .103 48
22 68 .144 53
23 68 .206 53
24 68 .283 53
25 68 .371 53
26 69 .410 54
27 60 .549 50
≥28 0 1 0

n1 = 39, n2,max = 77
k n2 D(k) l2(k)

≤20 0 0 0
21 38 .072 44
22 54 .11 53
23 73 .121 64
24 73 .175 64
25 76 .211 66
26 76 .283 66
27 77 .410 66
28 76 .454 66
29 77 .590 66
30 73 .680 64
≥31 0 1 0

n1 = 31, n2,max = 73
k n2 D(k) l2(k)

≤19 0 0 0
20 48 .081 53
21 66 .108 65
22 72 .150 69
23 73 .189 70
24 73 .261 70
25 68 .340 67
26 73 .437 70
27 66 .612 65
≥28 0 1 0
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Table 5.2.: continued

(a)

π0 = 0.7

n1 = 6, n2,max = 22
k n2 D(k) l2(k)

≤4 0 0 0
5 21 .086 22
6 21 .198 22

(b)

n1 = 15, n2,max = 25
k n2 D(k) l2(k)

≤11 0 0 0
12 15 .127 24
13 22 .165 30
14 25 .341 32
15 20 .608 28

(c)

n1 = 18, n2,max = 47
k n2 D(k) l2(k)

≤13 0 0 0
14 24 .111 33
15 42 .148 47
16 46 .233 50
17 47 .311 51
18 20 .772 30

π0 = 0.8

n1 = 9, n2,max = 21
k n2 D(k) l2(k)

≤7 0 0 0
8 19 .083 25
9 21 .179 27

(d)

n1 = 24, n2,max = 62
k n2 D(k) l2(k)

≤17 0 0 0
18 33 .094 44
19 47 .124 55
20 61 .143 66
21 61 .219 66
22 62 .285 67
23 54 .425 61
24 30 .730 43

n1 = 16, n2,max = 27
k n2 D(k) l2(k)

≤13 0 0 0
14 19 .083 31
15 27 .182 38
16 25 .421 36

and, as pointed out in Section 2.1, a variety of different optimization rules are used in

the construction of phase II trials in oncology. Therefore, we further investigated unre-

stricted adaptive designs for different minimization strategies. For convenience of tabula-

tion, we present results only for three specific parameter situations, namely (π0, π1, α, β) =

(0.1, 0.3, 0.05, 0.2), denoted as example 1, (π0, π1, α, β) = (0.2, 0.4, 0.05, 0.2), denoted as

example 2 and (π0, π1, α, β) = (0.3, 0.5, 0.05, 0.2), denoted as example 3. We considered

unrestricted adaptive designs that minimize for these design parameters (a) the expected

sample size under the null hypothesis EN(π0), (b) the expected sample size under the alter-

native hypothesis EN(π1), (c) the maximum sample size n1+max
(

n2(k)
)

and (d) the sum

of the expected sample size under the null and alternative hypothesis EN(π0) + EN(π1).

The latter optimization rule was also used by Levin et al. (2012) to investigate efficient

types of adaptation for continuous test statistics.

It is straightforward to modify the code of the branch-and-bound approach to obtain

unrestricted adaptive designs that are optimal with respect to these optimization criteria

thus extending the work by Simon (1989), Mander and Thompson (2010) and Jung et al.

(2004) (for the practical implementation, see Appendix A.3.4). For computational reasons,

we investigated designs with a total sample size smaller than 1′000 only. All results are

given in Table 5.3.

First we have a closer look on the resulting optimal designs with respect to the null hy-
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Table 5.3.: Layout of proposed optimal adaptive designs for different minimization strate-

gies

(a) EN(π0)

Example 1

n1 = 10
k n2 D(k) l2(k)

≤1 0 0 0
2 14 .158 4
3 24 .214 6
4 25 .463 6
≥5 10 1 0

Example 2

n1 = 11
k n2 D(k) l2(k)

≤2 0 0 0
3 17 .106 8
4 27 .156 11
5 36 .168 14
6 48 .241 17
7 54 .274 19
8 68 .276 23
9 48 .361 19

≥10 0 1 0

Example 3

n1 = 13
k n2 D(k) l2(k)

≤4 0 0 0
5 20 .113 13
6 33 .161 18
7 43 .192 22
8 50 .218 25
9 56 .305 27
10 61 .470 28
≥11 0 1 0

(b) EN(π1)

n1 = 12
k n2 D(k) l2(k)

≤1 0 0 0
2 17 .022 6
3 9 .225 4
≥4 0 1 0

n1 = 16
k n2 D(k) l2(k)

≤3 0 0 0
4 28 .015 14
5 18 .051 11
6 13 .252 9
≥7 0 1 0

n1 = 21
k n2 D(k) l2(k)

≤7 0 0 0
8 23 .055 18
9 22 .092 18
10 14 .219 15
≥11 0 1 0

(c) n1 +max
(

n2(k)
)

n1 = 11
k n2 D(k) l2(k)

0 0 0 0
1 11 .019 4
2 12 .026 5
3 12 .341 4
4 10 .651 4
≥5 0 1 0

n1 = 19
k n2 D(k) l2(k)

≤4 0 0 0
5 12 .073 9
6 13 .100 10
7 13 .253 10
8 11 .678 9
9 8 .832 9

≥10 0 1 0

n1 = 20
k n2 D(k) l2(k)

≤5 0 0 0
6 15 .015 15
7 16 .026 15
8 16 .074 15
9 16 .175 15
10 16 .340 15
11 16 .550 15
≥11 0 1 0

(d) EN(π0) + EN(π1)

n1 = 11
k n2 D(k) l2(k)

≤1 0 0 0
2 11 .083 4
3 21 .152 6
≥4 0 1 0

n1 = 15
k n2 D(k) l2(k)

≤4 0 0 0
5 18 .051 11
6 24 .089 13
7 14 .302 10
≥8 0 1 0

n1 = 18
k n2 D(k) l2(k)

≤6 0 0 0
7 23 .055 17
8 29 .129 19
9 21 .277 16

≥10 0 1 0

pothesis. As observed in the restricted case, the second-stage sample size increases with

the number of responses observed in the first stage. This effect becomes more promi-

nent for unrestricted designs. In example 2, the sample size of the second stage increases

up to n2 = 68 with 8 observed responses in the first stage and decreases only slightly

for 9 observed responses. The greater search parameter space of unrestricted designs re-

sults in average sample sizes that are somewhat lower compared to the restricted case.

For the considered examples, the average sample size of the unrestricted designs are

EN(π0) = 14.37, 19.72 and 22.84 compared to the values given for the restricted case
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in Table 5.1 of EN(π0) = 14.72, 19.80 and 23.02, respectively. Similar findings were made

by Banerjee and Tsiatis (2006), when they compared restricted to unrestricted designs.

Again, the Bayesian decision-theoretic construct applied by Banerjee and Tsiatis left room

for improvement and our unrestricted designs show smaller average sample sizes then the

designs by Banerjee and Tsiatis, which have average sample sizes of EN(π0) = 14.48, 20.07

and 23.21, respectively. For designs that are optimal with respect to the alternative hy-

pothesis, the sample size pattern is reversed and the second-stage sample size decreases

with the number of responses observed in the first stage. Here, lower sample sizes for

higher number of responses are favorable, as these outcomes are more likely under the

alternative hypothesis and contribute more to the average sample size under H1. The

optimal design shows regions, where the trial is stopped after the interim analysis for effi-

cacy and futility. In minimax designs the second-stage sample sizes lie close together and

the complete design shows a layout that is similar to a fixed group-sequential case. In all

examples we considered, the first-stage sample size and the maximum sample size coincide

with those of designs with a fixed second stage sample size (see Table 4.6). The maximum

sample size of these designs lies below the sample size needed for a one-stage fixed sample

design. For example 1, 2 and 3, the maximum sample size amounts to n = 23, n = 32

and n = 36, whereas an exact one-sample binomial test requires a sample size of n = 25,

n = 35 and n = 39, respectively. For continuous test statistics the one-sample design is

the optimal design with respect to maximum sample size (Wang and Tsiatis, 1987). With

discrete test statistics, the fixed sample size designs are, however, conservative. The de-

signs presented here have, with the timing of the interim analysis and sample size scheme,

more free parameters and thus allow for a more stringent exhaustion of the type I and

II error rate making a decrease in total sample size possible. The designs that minimize

the sum of EN(π0) and EN(π1) show greater symmetry compared to the situation when

the design is optimized only with respect to one criteria. It uses the highest sample size

when the number of responses is in the middle, away from both the boundaries to stop for

futility or efficacy. This shape is the sample size layout that should be desired for adaptive

tests according to Pong and Chow (2010, Chapter 5) and is similar to the layout found by

Levin et al. (2012) for continuous test statistics.

For the investigated optimality criteria, we obtained similar patterns of second-stage sam-

ple sizes for all other parameter constellations we considered. Figure 5.2 summarizes

qualitatively the layout of optimal designs with respect to (a) the null hypothesis, (b)

the alternative hypothesis, (c) the maximum sample size and (d) the sum of null and

alternative hypothesis.

In this chapter, we considered sample size recalculation rules that lead to an overall per-

formance optimization. It should be mentioned that the achieved gains in average sample

size are solely due to the new representation of adaptive phase II designs by means of
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Figure 5.2.: Sample size scheme of optimal adaptive designs for different optimization

criteria
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the discrete conditional error function and due to the improved search strategy. All these

designs keep the type I and II error rates at the prefixed levels.

Recently, Jin and Wei (2012) proposed an adaptive design based on Simon’s two-stage

optimal design that determines the sample size of stage two by conditional power argu-

ments. Here, the gains observed in average sample size come at the price of a reduced

overall power. In fact, if we allow in our design the same reduction in overall power, de-

signs with a smaller average sample size as compared to the designs by Jin and Wei (2012)

can be found. By construction, every other adaptive phase II design for the same test

problem will show an equal or higher average sample size as compared to our proposed

approach. Therefore, our work finally solves the open problem of finding the ultimate

optimal design.

We would like to note that the discrete conditional error function representation of phase

II designs allows much more flexible sample size recalculation strategies than these pre-

defined recalculation rules considered here. Alternative data-driven sample size adjust-

ment rules may be advisable if, for example, there is high uncertainty in specifying the

treatment effect in the planning phase. In the next chapter, the characteristics of various

sample size recalculation strategies are investigated.





Uncertainty is the rule in medicine.

(William Osler 1849 – 1919)

6
Evaluating the Performance of Flexible

Phase II Designs

A major requirement that led to the development of group-sequential designs is their abil-

ity to reduce the average number of patients needed per trail. Group-sequential designs

examine the accumulating data at defined time points and thus allow early termination

of a clinical trial. Later, flexible designs have been proposed that allow more far-reaching

changes to the study layout based on the results of an interim analysis. All these methods

can improve the efficiency of clinical trials, either by stopping a hopeless or an effective

trial early or by adjusting the sample size of an ongoing trial depending on the interim

results. Until today, several proposals have been made for efficient adaptive and flexible

designs applying a continuous endpoint (Jennison and Turnbull, 2006; Shih, 2006; Liu

et al., 2008; Bauer and König, 2006; Levin et al., 2012). Jennison and Turnbull (2006)

proposed a design where the experimenter starts with a group-sequential design powered

for a conservative effect with the option for early termination in order to generate satis-

factory design characteristics and average sample sizes for greater effect sizes. Liu et al.

(2008) considered designs with sufficient power over a wide interval of possible values of

the true response rate and a sample size close to the ideal sample size, i.e., the one needed

in a single stage design. Bauer and König (2006) among others investigated the efficiency

of a reassessment of trial perspective from interim data.

In the setting of single arm phase II designs in oncology, all designs presented so far aim at

optimizing the design with respect to a certain criterion. We especially considered designs

that minimize either the average sample size (optimal designs) or the total sample size

(minimax designs). Applying fixed rules, these designs neglect an important option of
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flexible designs: Flexible designs offer the opportunity to make changes ad hoc in response

to interim data. This wide-ranging room for design changes makes it difficult to evaluate

the performance of flexible designs.

Consider a clinical trial, where after the interim analysis an adaptation was performed.

At least conceptually, one may ask then for the recalculation rule that would have been

applied under all other possible outcomes k in the first stage. Then the performance of the

specific rule used, which is only a special one out of the universe of all flexible monitoring

schemes, is identical to the one of the pre-specified adaptive design defined by these rules.

Thus, in evaluating some pre-specified adaptation rules, it is possible to learn what flexible

designs, which are not fully pre-specified, may offer. For pre-specified adaptation rules, we

can write out exactly the sampling scheme and we can numerically calculate and compare

operating characteristics for group-sequential and adaptive designs.

In this way, we now investigate how the gained flexibility developed in Chapters 4 and 5

can improve the efficiency of single-arm phase II trials under different scenario settings.

Moreover, we will see whether a recalculation based on the interim results leads to favorable

characteristics, or whether a fixed group-sequential design should be used, i.e., whether

the possibility for recalculation should better be neglected. We first present different

approaches to evaluate the efficiency of adaptive phase II designs in general, followed by

a comprehensive comparison of different design variants and recalculation strategies.

6.1. Methodology for evaluating the efficiency of

group-sequential and adaptive designs

Efficiency of designs may be evaluated in a number of different ways. The statistical power,

i.e., the probability that the test will reject the null hypothesis when the null hypothesis is

false, is a general efficiency indicator for all statistical tests. As group-sequential designs

allow early stopping of the trial before all patients are recruited, the expected sample

size, i.e., the average sample size needed for each trial in a series of experiments, is a

frequently applied method for assessing the efficiency of group-sequential designs. For

phase II designs, the overall power 1 − β′(π) and the average sample size EN(π) at a

particular alternative π can be written as a weighted average of the conditional powers or

total sample sizes of the trial for all different interim outcomes, respectively.

1− β′(π) =

n1
∑

k=0

Prπ(Reject H0 | k) · b(k;n1, π)
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and

EN(π) =

n1
∑

k=0

{

n1 + n2(k)
}

· b(k;n1, π),

where b denotes the binomial distribution function. In phase II designs in oncology, patient

resources are usually limited and thus the maximum total sample size needed, max
(

n(k)
)

,

is an additional indicator of efficiency.

The practioner may refuse to accept long-term arguments on overall power and average

sample size which summarize the possible interim outcomes. Instead, he may be interested

in the impact of a specific sample size rule that – given the observed interim data – he wants

to apply in his trial. If it turns out that the true treatment effect was overestimated but is

still clinically relevant, the original study is underpowered. In this situation, an increase in

sample size may be justifiable and efficient, as planning the study with a smaller treatment

effect would likewise have required a greater sample size. If, however, the true treatment

effect was overestimated, a smaller sample size would have been sufficient and too many

patient resources are spent. To evaluate the performance of flexible sample size designs

we must reasonably account for their recalculation possibilities.

Liu et al. (2008) proposed to evaluate the performance of designs over an interval and not

only at an isolated point. Given the interval [πl, πu], πl < πu, of parameters of interest,

they proposed an average performance score (APS), which is defined as

APS =

∫ πu

πl

R(π) ω(π) dπ, (6.1)

where ω(π) is a weight function on [πl, πu] and R(π) a performance indicator.

The performance marker developed by Liu et al. (2008) for continuous endpoints compares

the random sample size of adaptive designs with the sample size needed in a single stage

design for the same setting. It allows for an objective judgment of whether a sample

size increase/decrease is justified. However, continuous data are required to apply this

measure. Therefore, we now develop a similar performance indicator that fits to binary

outcomes and adequately addresses the recalculation possibilities. For a given type I error

rate α, null hypothesis H0 : π = π0 and true response rate π, the one-stage design to

achieve a nominal power of 1 − β is the design with approximate sample size (see, for

example, Chow et al., 2008, p. 88):

n1−β(π) =

(

z1−β

√

π(1− π) + z1−α

√

π0(1− π0)

π − π0

)2

, (6.2)

where zγ denotes the γ-quantile of the standard normal distribution.
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Before we can propose a performance score R(π) for binomial data, some further terms

need to be specified. We define the ratio of the study sample size N to the sample size of

the one-stage design as

SR(N | π) = Study sample size

Sample size of the one-stage design
=

N

n1−β(π)
,

the relative oversize (ROS) as

ROS(π) = E[SR(N | π)− 1]+,

where [x]+ is the unit step function with [x]+ = x for x ≥ 0 and 0 otherwise, and the

relative underpower (RUP) as

RUP(π) =
[n1−β(π)− npow(π)]+
n1−β(π)− n0.8·(1−β)(π)

,

where npow(π) denotes the ideal one-stage sample size with power set equal to the power

value of the given adaptive design at the true treatment difference π.

ROS measures by how much the final study sample size exceeds the ideal sample size, i.e.,

the sample size needed for a one-stage study. The expectation is taken because the final

sample size N is a random variable in group-sequential and flexible designs and depends

on the interim data. RUP compares the sample size needed for a one-stage design to

achieve a power equal to the overall power of the applied adaptive design with the ideal

sample size. Therefore, ROS and RUP measure if the sample size ratio stays close to unity

and the power stays close to the targeted power. As in Liu et al. (2008) for continuous

endpoints, the study is 100% oversized if the final sample size is twice the ideal sample

size and 100% underpowered if the power of the procedure is 80% of the targeted power.

Finally, the performance function R(π) is defined as the sum of the relative oversize and

relative underpower

R(π) = ROS(π) + RUP(π). (6.3)

With (6.1) and (6.3) we are now able to adequately evaluate the performance of phase II

designs over the interval [πl, πu].

6.2. Framework for the comparison

We are particularly interested in the question, how different sample size recalculation

rules based on the interim results perform in comparison to fixed group-sequential designs,

where irrespective of the first-stage outcome the second stage is performed with a fixed
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(pre-)specified sample size n2. For recalculation, we consider rules based on conditional

power and recalculation scenarios that minimize certain characteristics of the design, for

example, the average sample number under the null hypothesis or the total sample size.

The conditional power is defined as the probability of rejection of the null hypothesis for

the alternative H ′
1 : π = π′ given the data accumulated so far:

CP(π′ | current data) = PrH′
1
(Reject H0 | current data).

If the study is stopped early for futility or efficacy, the conditional power equals zero or

one, respectively. Note that with π′ = π0 the conditional power equals the conditional

significance level. If the sample size is recalculated based on conditional power at an

interim analysis, n2 is chosen as the minimum integer where CP(π′) is greater than a

specified boundary. One possible way for recalculations based on condition power is to

require a conditional power for the next stage that is equal to the planned power 1−β. The

unconditional power of the test is then the weighted average over all conditional powers

1− β′(π′) =

n1
∑

k=0

CP(π′ | k) · b(k;n1, π
′), (6.4)

where the sufficient statistic k, the number of responses observed in the first stage, sum-

maries the data at the interim analysis.

Note that as the study can also be stopped early, recalculation based on conditional power

does not necessarily guarantee that the overall power will be achieved. When investigating

recalculation based on conditional power, we consider the scenarios of recalculation per-

formed with the originally assumed effect (π′ = π1), recalculation with the observed effect

(π′ = πobs = k/n1) and recalculation with a given fixed (external) effect (π′ = πext). Re-

calculation rules can, of course, be combined or restricted to certain scenarios that might

happen after the first stage. It might, for example, be realistic to recalculate the sample

size only if the boundary for early stop for efficacy was missed by only one response and

to continue otherwise with the preplanned design.

Sample size recalculation will be performed for the flexible and more efficient phase II

design presented in Section 4.4. Different recalculation rules applied for this design will be

compared with the classical group-sequential Simon’s designs presented in Section 2.1, the

response adaptive phase II designs of Chapter 5 (with restricted maximum total sample

size) and the per-design adaptive designs developed for phase II cancer trials by Lin and

Shih (2004). In Lin and Shih’s design, the layout depends on the results of the interim

analysis. Depending on the number of responses in the first stage, the study is powered

for a skeptic alternative H11 : π = π11, π11 > π0 or an optimistic target response rate

H12 : π = π12, π12 ≥ π11. The explicit study layout is as follows: With less or equal
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to s1 responses observed in the first stage, the trial is stopped early for futility. With

s1 < k ≤ r1 the study continues with m− n1 additional patients and the null hypothesis

is rejected when the total number of responses is greater than s, where k denotes the

number of observed responses in the first stage out of n1 patients. With k > r1 the study

continues with n−n1 additional patients and the null hypothesis is rejected when the total

number of responses is greater than r. The design is therefore determined by seven param-

eters (s1, r1, n1, s,m, r, n). Lin and Shih suggested selecting (s1, r1, n1, s,m, r, n) such that

the study is powered for 1 − β1 for the skeptic target response rate π11 and powered for

1− β2 for the optimistic target response rate π12, π12 ≥ π11. Specifying β1 = β2 = β and

π11 = π12 = π1 the designs by Lin and Shih results in a generalization of the designs by

Simon, i.e., the study is powered for 1− β for the alternative H1 : π = π1. The difference

to the classical Simon’s design is that generally two different second-stage sample sizes

are allowed depending on the interim results. Lin and Shih (2004) describe four different

optimization rules to choose (s1, r1, n1, s,m, r, n). They proposed to minimize EN(π0) (Op-

timal Type 1), max
(

EN(π0),EN(π11),EN(π12)
)

(Optimal Type 2), max(n,m) and EN(π0)

(Optimal Type 3), or max(n,m) and max
(

EN(π0),EN(π11),EN(π12)
)

(Optimal Type 4).

Designs of Optimal Type 1 are thereby an extension of Simon’s optimal designs and de-

signs of Optimal Type 3 are an extension of the minimax designs. We used these two

types of designs to allow for a fair comparison with other optimal and minimax designs.

6.3. Performance comparison

The significance level was fixed to α = 0.05 for all comparisons. All fixed designs were

determined to achieve a power of 1−β for a treatment effect of π1−π0 = 0.2. Therefore, in

the comparison of different phase II designs all designs satisfy the same type I and II error

rate constraints ensuring that these parameters won’t affect the performance comparison.

We have previously shown that all designs can be expressed equivalently in the discrete

conditional error function framework presented in Chapter 4. We used this framework

both for the recalculation and for the evaluation of the designs. Adaptive designs are

often criticized for the use of insufficient test statistics associated with a loss of efficiency

(Dette et al., 2012; Tsiatis and Mehta, 2003; Jennison and Turnbull, 2003). Evaluation of

fixed designs, where no recalculation is performed, based on the discrete conditional error

function assures that the evaluation strategy does not affect the performance comparison.

We evaluate the average performance score (6.1) of the considered designs in the interval

[π1−0.1, π1+0.1], i.e., in the case that the true treatment effect was under- or overestimated

by at most 10%. The true treatment effect is assumed to be equally likely in the given

interval and consequently a uniform weight function (w ≡ 1) is used. The performance
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score R(π) was calculated at 20 equally spaced response rates π within the interval. With

the uniform weight function, the APS value can then be approximated by the mean of

those performance scores.

6.3.1. Performance comparison of designs applying fixed rules

Figure 6.1 gives the results of the performance score comparison between Simon’s de-

sign (S), Lin and Shih’s design (LS), the design proposed in Section 4.4 (P) and the

response adaptive design proposed in Chapter 5 (PA). The left table displays for differ-

ent parameter settings the characteristics of optimal designs, whereas the right presents

minimax designs. The proposed response adaptive designs were included only for op-

timal designs. Investigating adaptive designs in Chapter 5, we have seen that a fixed

second-stage sample size is the optimal choice for minimizing the maximum sample size.

Therefore, the average performance score values for minimax group-sequential designs (P)

also apply to minimax adaptive designs (PA).
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Figure 6.1.: Performance comparison of designs with fixed rules (S = Simon, LS = Lin

and Shih, P = Proposed, PA = Proposed adaptive)
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A direct comparison between minimax and optimal designs shows that minimax designs

tend to have smaller average performance scores. This can be explained as follows: In

Simon’s design, the study sample size is a random variable with two outcomes

N =

{

n1 if the study is stopped early
n else.

Since in general n1 ≤ n1−β(π) the ROS is calculated as

ROS(π) =
(

1− PET(π)
)

[ n

n1−β(π)
− 1
]

+
,

where PET denotes the probability for early termination (2.1). Designs with a greater n1

and a smaller n will lead to smaller performance score values, since ROS penalizes only

sample sizes higher than the ideal sample size n1−β(π). Therefore, minimax designs that

usually use a greater n1 and smaller n tend to lead to smaller ROS values than optimal

designs. Similar considerations can be made for Lin and Shih’s design and the proposed

designs.

Per construction in Section 4.4 and Chapter 5, the proposed optimal designs outperform

Simon’s optimal designs with respect to average sample size under the null hypothesis

and the minimax designs with respect to maximum sample size. From Figure 6.1(a) and

(b) we see that the proposed designs are in most cases also superior with respect to the

average performance score, i.e., they are superior over an interval of response rates. This

is not true for the optimal design by Lin and Shih. As this design includes Simon’s design

as a special case, the average sample sizes under the null hypothesis are smaller. However,

with respect to the average performance score, Simon’s optimal design outperforms the

design by Lin and Shih (2004). A direct comparison (see Table 6.1) of the proposed design

with the design by Lin and Shih may explain these differences. The decrease in average

sample size under the null hypothesis EN(π0) achieved by the Lin and Shih (2004) design

is paid by a marked increase in maximum and average sample size under the alternative

hypothesis EN(π1) and in the average performance score. The same findings hold true

for the optimal adaptive designs presented in Chapter 5. By allowing the second-stage

sample size to depend on the interim outcome a reduction in average sample size under

the null hypothesis is possible. This, however, leads to an increase in average sample size

under the alternative hypothesis and, in case of a high treatment effect, to an increase of

the average performance score.

For minimax designs, Lin and Shih’s design is superior in average performance score to

Simon’s design in most cases, but still less efficient than the proposed method in case

of higher response rates. Comparison of standard design characteristics as in Table 6.2

show very similar characteristics for Lin and Shih’s design and the proposed method.

Maximum sample sizes of the minimax designs are equal, except for one case where the
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Table 6.1.: Performance comparison of optimal phase II designs with fixed rules (LS = Lin

and Shih, P = Proposed)

π0 β nLS EN(π0)LS EN(π1)LS nP EN(π0)P EN(π1)P

0.05 0.2 29 10.80 21.09 21 11.17 15.72
0.1 39 16.59 33.79 30 16.75 24.94

0.1 0.2 37 14.80 30.12 29 14.98 23.31
0.1 46 21.82 41.68 41 22.19 24.47

0.2 0.2 42 20.20 35.00 43 20.54 35.01
0.1 57 29.29 53.14 53 30.05 44.31

0.3 0.2 50 23.27 42.86 46 23.52 36.65
0.1 65 33.57 60.75 59 34.12 51.23

0.4 0.2 53 24.26 45.41 46 24.49 39.78
0.1 67 34.83 61.75 66 35.80 51.60

0.5 0.2 55 22.99 43.75 43 23.40 35.78
0.1 74 33.13 65.60 59 33.47 48.89

0.6 0.2 42 19.96 36.30 37 20.42 34.01
0.1 56 28.37 52.16 52 28.99 41.95

0.7 0.2 32 14.66 24.91 27 14.82 24.60
0.1 46 20.75 39.02 36 20.92 34.63

Table 6.2.: Performance comparison of minimax phase II designs with fixed rules (LS = Lin

and Shih, P = Proposed)

π0 β nLS EN(π0)LS EN(π1)LS nP EN(π0)P EN(π1)P

0.05 0.2 17 11.89 13.20 16 13.76 13.44
0.1 24 20.42 19.16 24 20.42 19.16

0.1 0.2 23 19.92 19.03 23 19.20 20.24
0.1 32 27.13 24.73 32 27.95 26.99

0.2 0.2 32 23.72 29.46 32 23.24 29.94
0.1 44 34.23 37.37 44 33.43 37.57

0.3 0.2 36 29.04 33.08 36 29.32 33.56
0.1 50 41.09 48.83 50 41.06 44.45

0.4 0.2 39 27.17 37.79 39 27.14 35.81
0.1 53 43.21 52.51 53 42.68 49.25

0.5 0.2 37 26.97 35.18 37 26.90 32.15
0.1 51 38.93 49.91 51 37.74 45.46

0.6 0.2 33 22.87 31.91 33 23.22 31.33
0.1 45 31.42 43.56 45 31.52 41.47

0.7 0.2 25 17.71 24.05 25 18.05 24.59
0.1 32 22.65 31.16 32 22.66 31.61



80 Chapter 6. Evaluating the Performance of Flexible Phase II Designs

proposed minimax design needs one patient less. In half of the cases, the proposed method

is superior with respect to maximum or average sample size under the null hypothesis,

even though the proposed design does not allow to choose between two but only a single

second-stage sample size.

6.3.2. Performance comparison of different recalculation rules based on

conditional power

We now investigate whether sample size adjustment is advisable at all and if this is true,

what data-driven sample size adjustment rules may be recommended if, for example, there

is high uncertainty in specifying the treatment effect in the planning phase. In Chapter 4,

we demonstrated how each classical phase II oncology design can directly be transferred

into a flexible design. In the preceding section, we have seen that the proposed flexible de-

sign is superior to Simon’s and Lin and Shih’s design with respect to both the optimization

criterion and average performance score, when no recalculation is performed. For optimal

designs, it was in most cases also superior to the adaptive design. Therefore, we use the

proposed flexible design (P) both as benchmark and as start design in the comparison of

different recalculation rules. Given the interim results, the sample size of this start design

is recalculated. Details on how recalculation is carried out within the proposed flexible

design are given in Chapter 4.

The considered recalculation scenarios aim at achieving a conditional power of 1 − β (a)

based on the assumed effect (P∼Assume), (b) based on the observed effect (P∼Obs) and

(c) based on a reduced effect of π′ = π1 − 0.05 (P∼Red). Recalculated sample sizes were

truncated at 2n. The fixed scenario with no recalculation, i.e., the proposed design P, is

included for comparison. For each scenario, the average performance score was calculated.

Results are given in Figure 6.2.

In optimal designs, recalculation based on the observed effect shows least favorable charac-

teristics with respect to APS. Recalculation based on the assumed or a reduced (external)

effect lead to similar average performance values. The APS of the fixed design without

flexible sample size adjustment lies in-between the considered recalculation strategies in

most cases.

For minimax designs, recalculation based on the assumed, the observed and a reduced

effect lead to similar performance score values. Here the fixed design is outperformed by

all these recalculation rules for high null response rates π0.

More insight in the distinct nature of these three recalculation strategies can be gained

by considering the performance score for different assumed response rates. Among our
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Figure 6.2.: Performance comparison of different recalculation rules (P = Proposed without

recalculation, P∼Assume = recalculation based on conditional power on the assumed effect,

P∼Obs = recalculation based on conditional power on the observed effect, P∼Red = recal-

culation based on a reduced effect of π′ = π1 − 0.05)

parameter choices, the minimax design for (π0, β) = (0.3, 0.1) leads to the smallest average

performance scores. Figure 6.3 plots the performance score R(π) = ROS(π) + RUP(π)

for the range of true treatment effects [π1 − 0.1, π1 + 0.1]. For each curve, the area under

the curve represents the average performance score. The gray area highlights the ROS(π)

part. The fixed design has the smallest performance score for the planned treatment

effect of π1 = 0.5. If the true treatment effect differs from the planned one, the fixed

design is oversized for greater effects and underpowered for smaller effects. In both cases,

the performance score increases. This is characterized by the wedge-shaped curve of the

performance score in Figure 6.3. It can be seen that for all re-estimation methods the

performance functions are more flat and have relatively low values over a broader interval.

This corresponds to designs with a good balance in used sample size and achieved statistical

power for these effect sizes. Designs with recalculated sample size reduce the efficiency of

the design for the planned response rate but are more efficient if there is uncertainty in

the treatment effect.
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Figure 6.3.: Performance score for proposed minimax design (π0, β) = (0.3, 0.1) (P = Pro-

posed without recalculation, P∼Assume = recalculation based on conditional power on the

assumed effect, P∼Obs = recalculation based on conditional power on the observed effect,

P∼Red = recalculation based on a reduced effect of π′ = π1 − 0.05). Shaded areas are

explained in the text.

For recalculation with the assumed effect, low values of the performance score are located

around the assumed effect of π1 = 0.5. If the sample size is recalculated based on the

observed effect, the performance function curve is more flat. However, in absolute values

they are lower only for values π ≤ π1 − 0.05. The complete performance score curve is

shifted into the direction towards lower treatment effects if recalculation is not based on

condition power for the assumed effect but for a reduced effect. In this design, more ef-

ficiency for lower treatment effects is achieved. This resulted, however, in less efficiency

for the originally assumed treatment effect. This explains why in all investigated combi-

nations recalculation based on the assumed effect and the reduced effect lead to similar

average performance scores (see Figure 6.2). Both strategies have different focus and,

apparently, do a good job. While there is no difference in the average performance score,

recalculation based on a reduced effect increases the overall power of the design if the

true treatment effect is lower than assumed. The overall power for a reduced effect of

π′ = π1 − 0.05 can be calculated by (6.4). In Table 6.3 and 6.4 we give the overall power

in case the sample size is recalculated based on the assumed effect (1 − β(π′)P∼Assume)
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Table 6.3.: Power comparison of proposed optimal phase II designs for different recalcula-

tion rules based on conditional power

π0 β 1− β(π′)P∼Assume 1− β(π′)P∼Red ∆Power

0.05 0.2 0.58 0.66 0.08
0.1 0.73 0.79 0.06

0.1 0.2 0.56 0.63 0.07
0.1 0.75 0.80 0.05

0.2 0.2 0.52 0.60 0.08
0.1 0.71 0.78 0.07

0.3 0.2 0.53 0.61 0.08
0.1 0.68 0.78 0.09

0.4 0.2 0.53 0.62 0.08
0.1 0.68 0.76 0.08

0.5 0.2 0.52 0.62 0.10
0.1 0.67 0.76 0.10

0.6 0.2 0.51 0.60 0.09
0.1 0.65 0.76 0.11

0.7 0.2 0.49 0.63 0.15
0.1 0.61 0.72 0.11

and based on a reduced effect (1− β(π′)P∼Red). We also included the difference in powers

∆Power := 1 − β(π′)P∼Red −
(

1 − β(π′)P∼Assume

)

. If recalculation is performed with the

reduced effect, the overall power 1− β(π′) increases on average by 9% for optimal designs

and by 10% for minimax designs.

In most cases, recalculation does, however, not guarantee that the overall power equals the

conditional power applied for sample size recalculation. The overall power is the weighted

average of the conditional powers for all interim results. If the number of responses at the

interim analysis is low, the study is stopped early for futility. In this case, the conditional

power equals zero. Necessarily, the overall power is smaller than

1− PrH′
1

(

Stop for futility
)

, (6.5)

with H ′
1 : π = π′. Usually, phase II designs in oncology have a high probability to stop

early for futility (≥ 50%), if the null hypothesis is true or if treatment effects are assumed

that lie close to the null hypothesis. According to (6.5), no recalculation strategy can

achieve sufficient overall power in these cases.
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Table 6.4.: Power comparison of proposed minimax phase II designs for different recalcu-

lation rules based on conditional power

π0 β 1− β(π′)P∼Assume 1− β(π′)P∼Red ∆Power

0.05 0.2 0.76 0.83 0.07
0.1 0.85 0.92 0.06

0.1 0.2 0.69 0.79 0.10
0.1 0.83 0.90 0.07

0.2 0.2 0.62 0.70 0.08
0.1 0.78 0.87 0.09

0.3 0.2 0.66 0.76 0.10
0.1 0.79 0.88 0.08

0.4 0.2 0.60 0.70 0.11
0.1 0.78 0.85 0.07

0.5 0.2 0.62 0.72 0.11
0.1 0.74 0.85 0.10

0.6 0.2 0.58 0.72 0.14
0.1 0.72 0.82 0.11

0.7 0.2 0.57 0.74 0.17
0.1 0.68 0.79 0.11

6.4. Properties compared and discussed

Figure 6.4 combines the results of Section 6.3. It illustrates the performance of different

designs and different recalculation rules. Simon’s design was used as reference (gray dotted

line). Changes in average performance scores are given for Lin and Shih’s design (LS) and

for the proposed designs with and without flexible recalculation of the sample size (PA,

P, P∼Assume, P∼Obs and P∼Red). For the same reasons as in Figure 6.1, the proposed

adaptive design (PA) was included only for optimal designs.

For optimal designs, Figure 6.4 demonstrates that recalculation with the observed effect

performs better than Lin and Shih’s design, similar to the proposed adaptive design and

Simon’s design, but worst among all reassessment strategies considered. When an interim

analysis is performed in the conduct of a flexible clinical trial, it is, however, tempting to

update the effect size for which the study has been powered for in the planning phase by

the interim estimate. This recalculation rule will increase/decrease the sample size if the

treatment effect observed in the interim analysis is smaller/higher than assumed. This is

due to two aspects: The power calculation was based on a different treatment effect and

the conditional error function is small/high for the number of responses observed in the

interim analysis, i.e., a small p-value is required/moderately high p-value is sufficient in the

second stage to reject the null hypothesis. On first sight, this recalculation rule perfectly
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Figure 6.4.: Performance comparison of different designs/different recalculation rules. Dif-

ference of APS scores to Simon’s design are shown (reference indicated by gray dotted

line, LS = Lin and Shih, PA = Proposed adaptive, P = Proposed without recalculation,

P∼Assume = recalculation based on conditional power on the assumed effect, P∼Obs = re-

calculation based on conditional power on the observed effect, P∼Red = recalculation based

on a reduced effect of π′ = π1 − 0.05)

matches to the current trial results. The treatment effect observed in the interim analysis

is, however, a random estimator of the true effect size. As the first-stage sample sizes are

small in phase II designs, the variation in the estimated treatment effect is high. This

leads to many cases where the observed treatment effect does not well approximate the

true treatment effect and where an inadequate recalculation rule is performed (Fleming,

2006). This explains the poor performance of this recalculation rule with respect to APS.

This performance marker counterbalances the gain in overall power and the used sample

size for a given true effect size to allow for a reasonable judgment.

In 2006, Bauer and König investigated the impact of using conditional power to reassess the

sample size. For flexible two-stage combination tests applying continuous test statistics,

they determined the density of the conditional power for different reassessment methods.



86 Chapter 6. Evaluating the Performance of Flexible Phase II Designs

Although the setting and the principle approach for evaluation differs, similar conclusions

were made. Bauer and König (2006) concluded that “mid-trial sample size recalculation

based on an interim estimate may lead to an overly large price to be paid in average sample

size in relation to the gain in overall power.”

From Figure 6.4 we see that recalculation based on the originally assumed effect and re-

calculation based on a reduced effect show favorable characteristics. Here, the correct

recalculation rule is applied if the predicted treatment effect is true. Sample size is in-

creased or reduced if (by chance) a smaller or higher number of responses were observed

in the interim analysis, respectively. However, the sample size is not increased enough to

guarantee sufficient power for a smaller treatment effect and the recalculated sample size is

too large for a greater treatment effect. The average performance score accounts for both

of these aspects. For optimal designs, both rules are generally preferable to the design

without recalculation and with recalculation based on the observed effect. Additionally,

from Figure 6.4 it can be seen that they lead to APS values smaller than Simon’s and

Lin and Shih’s optimal or minimax design and are superior with respect to this criteria.

An exception is the first parameter combination for optimal designs (π0, β) = (0.05, 0.2),

where Simon’s design performs best. For this parameter choice the proposed flexible

design, which was used as the initial design for recalculation, differs markedly from Si-

mon’s design. According to Table 4.5, the proposed flexible design uses for this parameter

constellation 4 patients (24%) more. This might explain the differences observed in the

average performance score.

In summary, we conclude from Figure 6.4 that recalculation of the sample size can improve

the efficiency of the designs, if the there is uncertainty with respect to the true treatment

effect. A flexible recalculation strategy can guarantee sufficient power if it becomes appar-

ent throughout the trial that the assumed treatment difference was too optimistic. The

price to be paid in terms of additional sample size has to be weighed against the gain in

power.



A statistical analysis, properly conducted, is a

delicate dissection of uncertainties, a surgery of

suppositions.

(Michael Joseph Moroney)

7
Clinical Trial Example

In this chapter, we demonstrate some of the rich possibilities of the proposed methods

by re-examining a single-center one-armed phase I/II cancer trial conducted by Combs

et al. (2012) (PANDORA-01 trial). The aim of the PANDORA-01 trial was to evaluate

the maximum tolerable dose for carbon ion radiotherapy in patients with recurrent rectal

cancer that had been previously treated with radiation. In phase I, the safety of a recom-

mended dose is determined by a dose escalation scheme. Subsequently, the effectiveness of

this dose level was investigated in patients with recurrent rectal cancer. Phase II was di-

rectly included in the study to streamline the development process. The primary endpoint

of this second part of the study was the 12-month progression-free survival rate π after

re-irradiation. Evaluation was recorded according to the RECIST criteria (Eisenhauer

et al., 2009). The one-sided null hypothesis H0 : π ≤ 0.6 was assessed at type I error rate

α = 0.05, and a type II error rate β = 0.2 at H1 : π = 0.8 was desired.

Combs et al. calculated the fixed two-stage design based on a combination test that fulfilled

the restrictions on type I and II error rate according to the algorithm given in Section 4.1.

The authors selected the optimal design minimizing EN(π0). This resulted in the following

design parameters: (n1, n2, α0, α1, cα) = (14, 25, 0.3, 0.03, 0.021). Accordingly, if the first-

stage p-value p1 (see (3.1) on page 19) is greater than α0 = 0.3, the study is terminated

early for futility. This requirement is met if equal to or less than l1 = 9 of the n1 =

14 patients in the first stage show a response. With u1 = 13 or more responses and,

equivalently, p1 ≤ α1, the study is discontinued after the first stage due to the proof of

efficacy. Otherwise, the study proceeds to the second stage and enrollment continues until

n2 = 25 additional patients are recruited. In the final analysis, the null hypothesis is

rejected if the product of the one-sided p-values of the two stages, p1 and p2 (see (3.2) on
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page 20), is equal to or lower than cα = 0.021; otherwise, the null hypothesis is accepted.

This fixed two-stage design can be transferred to a flexible design according to Section 4.2

by the following function C:

C(p1) =























0 if p1 ≥ 0.3 = α0

0.082 if p1 = 0.2793
0.170 if p1 = 0.1243
0.467 if p1 = 0.0398
1 if p1 ≤ 0.03 = α1.

The PANDORA-01 trial was conducted with these adaptive conditional test boundaries.

The null hypothesis is rejected after the second stage if p2 ≤ C(p1). As noted in Section 3.1,

it would have been possible to directly apply flexible designs methodology developed for

continuous test statistics. In Figure 7.1, the adaptive conditional test boundaries together

with the rejection region of the Bauer and Köhne design for continuous test statistics are

plotted for the study example. It can be seen how the proposed method assures better

exhaustion of the overall level by increasing the conditional type I error rate for the second

stage for each attainable first-stage p-value. If the sample size is not modified, the design

assures the desired power of 1 − β for H1 : π = 0.8 and has an average sample size (see

(4.2) on page 28) of EN(π0) = 20.8. This design shows characteristics very similar to those

of Simon’s optimal design, whose expected sample size is 20.5 according to Table 2.1, but

requires a maximum total of 43 patients.

The PANDORA-01 trial is the first trial evaluating the efficiency of carbon ion therapy for

patients with recurrent rectal cancer. Hence, there is considerable uncertainty with respect

to the assumed improvement in 12-month progression-free survival rate. It may therefore

not be anticipated to use a fixed group-sequential design such as Simon’s optimal design

that does not allow for changes in the course of the trial. In Section 4.3, we demonstrated

how the phase II study part of the PANDORA-01 trial could have been constructed directly

as a flexible version of Simon’s optimal design. Then, the conditional type I error rates

CE(k) (see (3.5) on page 23) are used as discrete conditional error function.

CE(k) =























0 if k ≤ 7
0.116 if k = 8
0.205 if k = 9
0.323 if k = 10
0.461 if k = 11 = n1.

The null hypothesis is rejected if the second-stage p-value p2 satisfies p2 ≤ CE(k).

As the original design is conservative, i.e., α′ = 0.049 < α = 0.05, the related flexible

design is also conservative. We have shown in Section 4.3 how the remaining level α− α′

can be implemented to overcome the conservativeness in a flexible setting by increasing the
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Figure 7.1.: Rejection regions of the proposed flexible design based on combination test

in terms of the observed p-values p1 and p2. The rejection boundaries of the proposed

method are printed in bold dots. The rejection region of the Bauer and Köhne design for

continuous test statistics is given for comparison (line). The figure displays only the region

where the rejection boundaries are different from zero.

boundaries CE(k) with CE(k) 6= 0 and CE(k) 6= 1. We now (1) increase the conditional

type I error rates proportionally to the probability of observing p1 (4.4), (2) distribute

the remaining level α − α′ equally among the conditional error function values (4.5) and

(3) increase only the smallest conditional error function value unequal to zero (4.6). The

resulting discrete conditional error functions exhausting the nominal type I error rate are

given below.

D1

(

p1(k)
)

=























0
0.119
0.208
0.326
0.464

D2

(

p1(k)
)

=























0
0.117
0.208
0.332
0.528

D3

(

p1(k)
)

=























0 if k ≤ 7
0.121 if k = 8
0.205 if k = 9
0.323 if k = 10
0.461 if k = 11 = n1.

If no design modifications are performed, the same decision rules are applied as for Si-

mon’s design. In addition, the resulting designs allow for flexible design changes without

undermining the nominal significance level. If, for example, the sample size is changed

after an interim analysis, situations exist where, due to the increased boundaries, rejection
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of the null hypothesis is possible if the study was planned with D1

(

p1(k), D2

(

p1(k)
)

or

D3

(

p1(k)
)

but not if the flexible version of Simon’s design was applied. This occurs for

CE(k) < p2 ≤ D
(

p1(k)
)

.

The proposed flexible and more efficient phase II designs of Section 4.4 allow for the same

degree of flexibility but additionally show better characteristics than standard designs

if no adaptations are performed. If the trial of Combs et al. (2012) with parameters

(π0, π1, α, β) = (0.6, 0.8, 0.05, 0.2) had been constructed within this framework, n1 = 14

patients would have been required in the first stage according to the optimal two-stage

design given in Table 4.7. For the second stage only n2 = 23 patients would have sufficed to

fulfill the α and β constraints. Evaluation of the design would then have to be performed

with the following discrete conditional error function D (see Table 4.7):

D(p1) =







































0 if p1 > 0.2793
0.124 if p1 = 0.2793
0.237 if p1 = 0.1243
0.238 if p1 = 0.0398
0.390 if p1 = 0.0081
0.407 if p1 = 0.0004
1 if p1 < 0.0004.

(7.1)

This design requires a maximum of n = 37 patients and on average EN(π0) = 20.42 per

trial. In Chapter 5, we derived these new flexible and more efficient phase II designs

also for the situation that the planned second-stage sample size depends on the interim

outcome. The discrete conditional error function together with the second stage sample

sizes of this optimal adaptive phase II design are given in Table 7.1 (see also Table 5.2 on

page 63). Here, a maximum of 44 patients and on average 19.72 per trial are needed.

A summary of the design characteristics of all flexible design variants developed for the

considered clinical trial example is given in Table 7.2. Here, it is assumed that the trials

were conducted as planned without flexible modification throughout the trial. All these

Table 7.1.: Layout of the optimal adaptive design (Chapter 5) for the clinical trial example

(π0, π1, α, β) = (0.6, 0.8, 0.05, 0.2)

n1 = 10
k p1(k) n2(k) n(k) D(k)

≤6 0.6331 0 10 0
7 0.3823 21 31 0.096
8 0.1673 31 41 0.143
9 0.0464 31 41 0.245

10 0.0060 34 44 0.354



91

Table 7.2.: Design characteristics of the different approaches for the clinical trial example

(π0, π1, α, β) = (0.6, 0.8, 0.05, 0.2)

Design EN(π0) n α′ β′

Flexible design based on combination test (Section 4.2) 20.78 39 0.046 0.199
Flexible version of Simon’s design (Section 4.3) 20.48 43 0.049 0.198
Flexible and more efficient design (Section 4.4) 20.42 37 0.050 0.199
Optimal adaptive phase II design (Chapter 5) 19.72 31-44 0.050 0.199

designs aim at minimizing the average sample size under the null hypothesis. We note

that all designs control and exhaust the nominal type I error rate in a flexible setting.

The expected and maximum sample size of the flexible and more efficient design is lower

by 0.06 and 6 patients, respectively, than the corresponding Simon’s optimal design, and

lower by 0.36 and 4 if the flexible design based on combination test is used. According

to Table 7.2, the gain in performance is not associated with a loss in power but with a

better use of the nominal significance level in case that no design changes are performed.

The optimal adaptive phase II design that allows the second-stage sample size to depend

on the interim outcome, shows an average sample size that is lower by 0.7 compared

to the design of Section 4.4 and lower by 0.76 compared to Simon’s design. However,

the maximum possible sample size also increases by 7 patients or 1 patient, respectively.

Taking into account that Simon’s design has been deemed to be optimal for decades,

the additional decrease in sample size which can be achieved by applying our proposed

methods must be regarded as a significant contribution to the field of clinical trial design.

There are still hundreds of phase II trials performed each year worldwide that use Simon’s

design. Application of our proposed design will prevent a considerable number of patients

from being included in such trials in case of inefficient therapies under investigation (as

we minimize the sample size under the null hypothesis). Noteworthy, the reduction in

average sample size has not to be paid with a loss in power or conservativeness but is due

to the new methodology and the efficient search algorithm.

Let us now assume the hypothetical situation that the trial by Combs et al. was planned

with the proposed flexible and more efficient design of Section 4.4. Further, we assume

that 10 responses were observed in the first stage, but external evidence suggests that the

response rate is slightly lower than π1 = 0.8 while the improvement may still be clinically

relevant. The number of responses in the first stage translates to a p-value of

p1 = PrH0(X1 ≥ 10) = 1−B(9− 1; 0.6, 14) = 0.2793,

with the cumulative distribution function of the binomial distribution B. According

to (7.1), D(0.2793) = 0.124 and thus a p-value of p2 ≤ 0.124 is necessary to reject the
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null hypothesis after the second stage. When the planned number of n2 = 23 patients is

included in the second stage, the conditional power, i.e., the probability of rejection of the

null hypothesis given a reduced effect of H ′
1 : π = 0.75, amounts to

PrH′
1
(P2 ≤ 0.124) =

23
∑

l=0

PrH′
1

{

P2 ≤ 0.124
∣

∣ P2 = p2(l)
}

· PrH′
1

{

P2 = p2(l)
}

=
23
∑

l=0

I{p2(l)≤0.124} · b(l; 0.75, 23)

= 0.654,

where I denotes the indicator function and b denotes the binomial probability mass func-

tion. It may be desirable to increase the probability for rejection of the null hypothesis

at the end of the trial to at least 0.8 under the assumption that the true response rate is

π′ = 0.75. Continuing the trial with n2 = 43 instead of the initially planned 23 patients

will satisfy this requirement. Such a change in sample size is not possible in standard

phase II designs without potential inflation of the type I error rate, as demonstrated in

Chapter 3. The proposed flexible two-stage design allows this change without compro-

mising the overall type I error rate. In the performance evaluation in Chapter 6, we saw,

based on the average performance scores, that such recalculations are also efficient from a

methodological point of view. Figure 6.2(a) shows that for the parameter setting π0 = 0.6

and β = 0.2, a recalculation based on a reduced effect of π′ is more efficient than the fixed

design without adaptations.

Note that the determination of the sample size in stage two is not restricted to conditional

power arguments or other pre-specified rules but can even be set ad hoc during the interim

analysis and may additionally take economic or safety considerations into account.

Within the proposed flexible designs, it is also possible to react to unintentional sample

size changes, e.g., due to overrun. Assume that the trial by Combs et al. continued after

the interim analysis and that recruitment was not stopped exactly after attainment of the

sample size specified for the second stage but that one additional patient was included.

Consequently, n2 = 24 patients instead of 23 were evaluable in the final analysis. Within

the flexible design, the test decision depends only on the p-value of the second stage and

therefore the evaluation is straightforward.



Statistics are no substitute for judgment.

(Henry Clay)

8
Discussion

This chapter summarizes the advances described in this thesis and their limitations.

8.1. Contributions to research

In this thesis, we have proposed a general method for two-stage one-armed clinical trials

with discrete test statistics that allows arbitrary modifications of the second-stage sample

size based on the results of the interim analysis or on information from outside the trial.

In a first step towards this goal, we directly applied flexible design methodology devel-

oped for continuous outcomes to binary response variables. This resulted in conservative

procedures, and apparently self-evident solutions led to inflation of the type I error rate.

Therefore, special methods are needed for discrete test statistics. It may be generally

questioned whether strict control of the type I error rate is a substantial design aspect

of single-arm trials as such trials are performed without including a control treatment.

Designs with unknown or inflated type I error rate make things not better but even worse.

If phase II designs are part of a regulatory submission, strict type I error rate control is

mandatory.

Our first approach to guarantee a better exhaustion of the nominal level applies adaptive

conditional tests based on a new fixed two-stage design that uses the combination test

approach. In practical applications, a clinical trial can be planned for this fixed design

whereby only the first-stage sample size and the adaptive conditional test boundaries need

to be specified in the protocol. In the resulting flexible design, the sample size for the

second stage can be changed while still controlling the type I error rate. If the sample
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size is not changed, the power as well as the total and expected sample size coincide with

those of the original combination test design. As these characteristics can be chosen to be

very similar to the optimal design of Chang et al. (1987), the huge advantage of the new

design with respect to its flexibility does not come at the price of an increase in sample

size.

We have proven that a key characteristic of all flexible designs is that the second stage is

planned for uniformly distributed p-values. We have developed a second discrete condi-

tional error function approach that defines the conditional significance level of the second

stage given the interim results. This approach allows flexible design changes as a free gift

for all classical phase II designs presented in the literature (e.g., Simon, 1989; Banerjee

and Tsiatis, 2006; Mander et al., 2012). The main contribution of this thesis is that in

combination with the first approach, we were able to construct new and more efficient

phase II designs that allow flexible design modifications and show better characteristics

than standard designs if no adaptations are performed. The discreteness of the second

stage is taken into account when planning the trial to guarantee satisfactory properties

in practical applications. Applying the discrete conditional error function methodology,

we derived these optimal flexible phase II designs both for a planned fixed second-stage

sample size and in the situation that the second-stage sample size may already depend on

the interim outcome in the planning phase. To calculate the designs efficiently, we showed

how the branch-and-bound algorithm can be applied in combination with the discrete

conditional error function methodology.

To evaluate the performance of the developed flexible sample size designs, adequate mea-

sures are needed to account for the option of sample size recalculation. We adapted a

performance score by Liu et al. (2008) to discrete test statistics. With this tool, we

evaluated and compared our designs with other phase II designs and analyzed different

recalculation scenarios. Our findings may serve to guide researchers seeking recalculation

rules that – given the observed interim data – are suitable for their trials. For a clinical

trial conducted by Combs et al. (2012) that was planned with our flexible design method,

we presented in detail which aspects should be considered in the planning and analysis

stage.

8.2. Limitations and directions for further research

Similar to most designs in the area of phase II oncological trials, we treated the unfavorable

response rate π0 as a constant. In practice, π0 may be set equal to a historical response

level or some reference response level and is affected with some uncertainty. Ignoring this

uncertainty, our frequentist method depends as little as possible on subjective input from
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the judgment of physicians or previous studies. Bayesian methods, on the other hand,

use this information by establishing a prior distribution for the response rate. To our

knowledge, all Bayesian methods are restricted to per-design adaptive designs and do not

allow the flexibility desired in our thesis. Further research will show whether and how

uncertainty with respect to π0 can be implemented into our flexible designs.

In all flexible designs presented, the rules for sample size recalculation need not be defined

in advance, but it is possible to change the second-stage sample size freely after the in-

terim analysis. Depending on the situation at hand, recalculation may be done according

to conditional power arguments or may include economic or safety arguments. Likewise,

the sample size can be chosen to obtain confidence intervals of specified width, and it is

also possible to take into account information gained from parallel studies. It should be

noted that the approach of using the conditional power based on the observed interim re-

sults showed undesirable properties. As a consequence, recalculations using the estimated

interim effect should be considered with caution. A study team should investigate which

adaptation strategy is to be preferred in a given situation. Evaluation of different rules

for interim modifications leads, however, to a more complicated protocol and thus to an

extended design stage of the trial. It must then be assessed whether the gains in efficiency

during the trial justify this prolongation of the design stage.

The proposed flexible designs can deal with the situation that the sample size of the second

stage is not definitely fixed after the interim analysis or that the planned sample size is

not met. On the one hand, this ability enables investigators to cope with unintentional

departures from protocol definitions such as over- or underrunning. On the other hand,

there is potential for misuse of the method. Our approaches are valid only, when the

data are examined exactly twice (at the interim and final analyses). All available data

should be used at each analysis without arbitrarily adding or removing outcomes to fish

for a desirable result. Therefore, adequate measures have to be taken to assure that

the integrity of the trial is maintained when applying the proposed flexible designs, e.g.,

standard operation procedures specifically tailored to this type of design. Furthermore,

detailed definitions should be given in the protocol and in the statistical analysis plan and

must be adhered to strictly (Gallo, 2006a,b; Hung et al., 2006).

In our methodology, the first-stage sample size is fixed and needs to be attained at the

interim analysis. Green and Dahlberg (1992), Chen and Ng (1998) and Li et al. (2012) de-

veloped methodology for classical phase II oncology designs to allow for unplanned changes

in the sample size of the first stage. They imposed, either by frequentist or Bayesian pro-

cedures, assumptions on the distribution of the possible scenarios of over- or underrunning

and developed designs with appropriate characteristics. From a methodological point of

view, these designs control the type I error rate averaged over a range of first-stage sample
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sizes. Therefore, these methods allow reaction to unintentional sample size changes. It is

straightforward to apply these methods to our proposed flexible design to allow a certain

degree of flexibility. However, these approaches do not control the type I error rate for

each specific sample size that may occur in the course of the trial. Adequate measures

for intentional sample size changes are still lacking. In this work, we have shown that

our discrete conditional error function methodology allows for an alternative equivalent

representation and evaluation of phase II designs. Further research will show whether this

new presentation can be utilized to deal adequately with both planned and unplanned

deviations from the study protocol, even in the first stage. Promising early results were

presented by Englert and Kieser (2013a) at the 3rd Joint Statistical Meeting DAGStat

2013.

Furthermore, a more general usage and benefit of the branch-and-bound algorithm and its

adaptation are possible. This method is a far more efficient means of identifying classical

fixed two-stage phase II designs with specified optimality criteria than investigating all

possible combinations of sample sizes and decision rules. This is, however, still the method

applied by most authors (see, for example, Simon, 1989; Lin and Shih, 2004; Mander et al.,

2012). A naïve search for optimal designs becomes infeasible for high total sample sizes or

small treatment effects. In these situations, most authors impose restrictions on the total

sample size in their search procedure thus, however, potentially leaving out the optimal

solution (Dong et al., 2012; Mander et al., 2012). The algorithms can also be applied

to modern methodological developments in phase II cancer trials, which account for new

aspects and require more free parameters. For example, Chang et al. (2012) developed an

improved two-stage phase II design that stratifies patients into subgroups to account for a

different prognosis. The complexity of the design is increased as the different strata result

in more free parameters. The test statistic used by Chang et al. is a linear combination

of the observed number of responders. This allows a direct application of the branch-

and-bound algorithm to ease the high complexity of the computations. In a recently

accepted paper, Hou et al. (2013) present randomized phase II clinical trials with two

treatment arms that are compared to a common historical control. The search algorithm

for the design accounts for the number of responses in both treatment arms, doubling the

number of free parameters. The authors state that “the computing time is intractably long

if an exhaustive search is attempted” and restricted the parameter space considerably.

Again, the optimization problem is linear and the branch-and-bound algorithm can be

applied potentially thus allowing for an exhaustive search. More advanced phase II designs

can in some instances only be derived when more efficient computational methods are

applied. Availability of the algorithms and corresponding R programs (see Appendix A)

may stimulate other authors to calculate their phase II designs efficiently possibly leading

to further improvements in phase II designs.
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8.3. Conclusions

Flexible designs for single-arm phase II trials in oncology are an important addition to

the currently available methodological spectrum. They allow investigators to react to

every eventuality that may occur in the course of a clinical trial without undermining the

nominal type I error rate. Moreover, although they allow more flexibility, these designs do

not feature a higher average sample size or a lower statistical power. In fact, the converse

is true: it is possible to construct flexible designs that outperform existing designs.

Flexible interim analyses are the methodological realization of item 36 in the Critical

Path Opportunities List released by the FDA, namely use of accumulated information

in trial design. According to the FDA, items in the Critical Path Opportunities List

provide “opportunities that, if implemented, can help speed the development and approval

of medical products” (FDA, 2006).

We acknowledge that statistical considerations should never be the only reason for selecting

a particular study design. A multitude of ethical, scientific, practical and economic issues

must also be taken into account at the design stage.





Statistics may be defined as “a body of methods for

making wise decisions in the face of uncertainty.”

(Wilson Allen Wallis)

9
Summary

Clinical phase II trials in oncology are conducted to determine whether the activity of a

new anticancer treatment is promising enough to merit further investigation. Two-stage

designs are commonly used for this situation to allow for early termination. Although

there is an ongoing debate on the relative merits of single-arm versus randomized phase

II trials, the standard tool in cancer research remain single-arm trials.

Designs proposed in the literature so far have the common drawback that the sample

sizes for the two stages have to be specified in the protocol and have to be adhered to

strictly during the course of the trial. As a consequence, designs that allow a higher

extent of flexibility are desirable. Currently available flexible design methods are tailored

to comparative studies with continuous test statistics. We have shown that direct transfer

of these methods to discrete test statistics results in conservative procedures and, likewise,

in a loss in power. Therefore, special methods are needed for discrete test statistics.

In this thesis, we propose flexible methods that allow an arbitrary modification of the

sample size of the second stage using the results of the interim analysis or external in-

formation while controlling the type I error rate. We constructed new designs based on

a combination test and based on the conditional error function principle that directly

account for the discreteness of the outcome. It is shown, further, how both approaches

can be combined to construct new phase II designs that are more efficient as compared

to currently applied designs and that allow flexible mid-course design modifications. We

derived these new flexible and more efficient phase II designs for both a planned fixed

second-stage sample size and for the situation that the planned second-stage sample size

depends on the interim outcome. Results are tabulated for a wide range of frequently used

design parameters.
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Taking into account that classical phase II designs in oncology have been deemed to be

optimal for decades, the additional decrease in sample size which can be achieved by

applying our proposed methods must be regarded as a significant contribution to the field

of clinical trial design. As hundreds of phase II oncology trials are performed each year

worldwide, the application of our new designs will not only allow for flexibility in the

conduct of these trials, but also preclude a considerable number of patients from being

included in such trials.

The search algorithms used to identify these designs are computationally intensive. There-

fore, ways to improve the search strategy were developed and the implementation of these

methods was described in detail. All computer programs are provided and illustrated with

examples.

Emphasis was placed on evaluation of the adaptive performance of the developed flexible

phase II designs. When adjustments are made, the consequences in terms of increasing/de-

creasing the sample size have to be weighed against the gain/loss in power. We developed

a performance indicator that fits to binary outcomes and satisfactorily addresses recalcula-

tion possibilities. Thus, we identified recalculation rules which improved the performance

of the designs, if there is uncertainty with respect to the treatment effect.

Application and the rich possibilities of the proposed methods were illustrated with a

clinical trial that was planned with methodology described in this thesis.

In summary, the new designs we developed allow the use of mid-course information for

planning the second stage of the study, thus meeting practical requirements when per-

forming phase II clinical trials in oncology. The observed reduction in average sample size

when applying our new flexible study designs, with no resultant loss in power, is due to

the new methodology and the efficient search algorithm.



A
Source Codes and Technical Notes for

Programmers

A.1. Modified discrete conditional error function

Source code A.1: Updatedcef-function

updatedcef <- function(p0, inputdcef, nominalalpha = 0.05, how =

"proportionally"){

#Calculate parameters

n1 <- length(inputdcef)-1

propp0 <- dbinom(0:n1,n1,p0)

alpha <- drop(inputdcef %*% propp0) #Calculation of type I

error rate

#Extract middle part of dcef

inputdcefmiddle <- inputdcef[inputdcef!=1 & inputdcef!=0]

propp0middle <- propp0[inputdcef!=1 & inputdcef!=0]

n1middle <- length(inputdcefmiddle)

restalpha <- nominalalpha - alpha

if(restalpha < 0){

cat("\n")

cat("\n Nominal significance level lower than type I error

rate. \n")
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cat("\n")

updatetodcef <-rep(0,length(inputdcef))

}

else

{

switch(how,

proportionally =

updatetodcef <- c(rep(0,length(inputdcef[inputdcef==0]))

,((restalpha * (propp0middle/sum(propp0middle)))) /

propp0middle,rep(0,length(inputdcef[inputdcef==1]))),

equally =

updatetodcef <- c(rep(0,length(inputdcef[inputdcef==0])),(

restalpha / n1middle) / propp0middle,rep(0,length(

inputdcef[inputdcef==1]))),

border =

updatetodcef <- c(rep(0,length(inputdcef[inputdcef==0])),c

(restalpha, rep(0,n1middle-1)) / propp0middle,rep(0,

length(inputdcef[inputdcef==1]))),

updatetodcef <- rep(0,length(inputdcef))

)

}

#Output results

minimum_vector <- function(x){min(x,1)}

outputdcef <- sapply(inputdcef + updatetodcef, minimum_vector)

cat("\n")

cat("dCEF: \n", inputdcef, "\n")

cat("\n")

cat("Updated dCEF: \n", outputdcef, "\n")

cat("\n")

cat("Alpha: ",drop(outputdcef %*% propp0),"\n")

cat("\n")

}

The updatedcef-function has two mandatory parameters: p0 := π0 and inputdcef,

the discrete conditional error function that does not exhaust the nominal level. The two

optional parameters nominalalpha := α and how define the significance level used and

how the discrete conditional error function should be increased to exhaust the nominal

level. As standard, the significance level is set equal to 0.05 and the remaining level is
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spent proportionally. Note that this results in terms of absolute values in an equal increase

of all discrete conditional error function values unequal from zero or one. Other options

are equally or border, where the remaining level is distributed equally among these values

or the complete remaining level is spent on the smallest conditional error function value

unequal to zero, respectively.

Within the updatedcef-function, the first step is to identify the “middle” region of

discrete conditional error function with values unequal from zero or one. In a next step,

these values are increased according to the specification how the remaining significance

level α − α′ should be used (see (4.4), (4.5) and (4.6) on page 35). Finally, the original

and updated (with increased values) discrete conditional error function are printed out.

A.2. Sample size recalculation

Source code A.2: Recalculation of the second-stage sample size based on conditional power

condpower <- function(p0,n1,p1,n2,dCEFvalue){

condpoweriter <- 0

for(l in 0:n2){

if(1-pbinom(l-1, n2, p0) <= dCEFvalue){

condpoweriter <- condpoweriter + dbinom(l,n2,p1)

}

}

#Output result

condpoweriter

}

recalcn2 <- function(p0,n1,p1,dCEFvalue,boundary,n2max=Inf){

n2 <- 0

condpoweriter <- 0

if (dCEFvalue == 0 | dCEFvalue == 1){

n2 <- 0}

else{

while(condpoweriter < boundary & n2 <= n2max){

n2 <- n2 + 1

condpoweriter <- condpower(p0,n1,p1,n2,dCEFvalue)

}

}

#Output result
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cat("Sample size needed in the second stage:\n")

cat(n2)

cat("\n")

}

The source code for recalculation of the sample size based on conditional power is spitted

into two functions: A condpower-function that is capable of calculating conditional

powers and a recalcn2-function that determines the recalculated sample size.

The condpower-function has five mandatory parameters: p0 := π0, n1 := n1, p1 := π1,

n2 := n2 and the value of the discrete conditional error function used for recalculation

dCEFvalue := D. Given D, the conditional power for H1 : π = π1 is calculated according

to the law of total probability:

PrH1

{

P2 ≤ D
}

=

n2
∑

l=0

PrH1

{

P2 ≤ D
∣

∣ P2 = p2(l)
}

· PrH1

{

P2 = p2(l)
}

=

n2
∑

l=0

I{p2(l)≤D} · b(l;π1, n2),

where I denotes the indicator function and b denotes the binomial probability mass func-

tion.

The recalcn2-function also has p0 := π0, n1 := n1, p1 := π1 and dCEFvalue := D

as mandatory parameters. In addition, the value of the conditional power that should be

achieved with the recalculated sample size is required. An additional optional parameter

n2max defines if the recalculated sample sizes should be truncated at a certain value. As

standard, no restrictions are made, i.e., the maximum second-stage sample size is set equal

to infinity. The recalculated sample size n2 is determined by choosing n2 as the minimum

integer where the conditional power is greater than the specified boundary. With D = 0

or D = 1 early stopping after the first stage is possible and the second-stage sample size

is set equal to n2 = 0.

A.3. Branch-and-bound

The algorithms to determine the sample sizes of the proposed flexible designs are computa-

tionally intensive. We developed an intelligent search algorithm that uses the branch-and-

bound method and thus allows an exhaustive and non-restricted search for the optimal

design. It consists of three routines, (a) a launch-function that defines all design param-

eters, calculates needed variables, initializes the branching algorithm and afterwards dis-

plays the results, (b) a branch-function that splits the problem into similar sub-problems
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and (c) a bound-function that discards sub-problems that cannot lead to optimal solu-

tions of the test problem. The following sections give the complete source code together

with technical notes on the programming.

A.3.1. Launch-function

Source code A.3: Branch-and-bound – Launch-function

launch <- function(p0,p1,nominalalpha,nominalbeta,n1,n2min,n2max

= n2min,minpnext = 0,en = n1+n2max){

#Define all design parameters

p0 <<- p0

p1 <<- p1

nominalalpha <<- nominalalpha

nominalbeta <<- nominalbeta

nominalpower <<- 1-nominalbeta

n1 <<- n1

n2min <<- n2min

n2max <<- n2max

minpnext <<- minpnext

#Calculation of variables

propp0 <<- dbinom(0:n1,n1,p0)

propp1 <<- dbinom(0:n1,n1,p1)

count_n1 <<- length(propp0);

dcpf <<- c()

dcef <<- c()

dcss <<- c()

for (n2iter in n2min:n2max) {

dcef <<- c(dcef,pbinom(0:n2iter-1,n2iter,p0,lower.tail =

FALSE))

dcpf <<- c(dcpf,pbinom(0:n2iter-1,n2iter,p1,lower.tail =

FALSE))

dcss <<- c(dcss,rep(n1+n2iter,length(pbinom(0:n2iter-1,

n2iter,p0,lower.tail = FALSE))))

}

possiblecef <<- cbind(dcef,dcpf,dcss)

possiblecef <<- subset(possiblecef, dcef >= minpnext & dcef <=

1-minpnext)
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possiblecef <<- possiblecef[order(possiblecef[,1]),]

dcef <<- c(0,possiblecef[,1],1)

dcpf <<- c(0,possiblecef[,2],1)

dcss <<- c(n1,possiblecef[,3],n1)

set_P_2 <<- length(dcef);

niter <<- rep(1,count_n1)

#Preparation for start

i<<-0

en<<-en

combination<<-c()

cat("\n")

cat("Searching optimal solutions:\n")

cat("\n")

#Initialize first branching-step

branch(0,1)

#Print final results

cat("Search completed. In total,",i,"of",choose(count_n1+set_P

_2-1,count_n1),"combinations were evaluated.\n")

cat("\n")

if(i==0){

cat("No solution possible.\n")

}

else {

cat("Optimal D(k): \n", dcef[combination], "\n \n")

cat("Optimal n_2(k): \n", dcss[combination], "\n \n")

cat("\n")

cat("Alpha: ",drop(dcef[combination] %*% propp0),"\n")

cat("Beta: ",1-drop(dcpf[combination] %*% propp1),"\n")

cat("EN_p0: ",drop(dcss[combination] %*% propp0),"\n")

}

cat("\n")

}

The launch-function initializes the branch-and-bound algorithm. The function has six

mandatory parameters: p0 := π0, p1 := π1, nominalalpha := α, nominalbeta := β,

n1 := n1 and n2min := n2,min. The first optional parameter is n2,max. If n2,max is
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not specified, it is set equal to n2,max = n2,min = n2. With this parameter setting the

branch-and-bound algorithm searches for an optimal discrete conditional error function as

presented in Section 4.4. If n2,max is specified, the second-stage sample size is allowed to

vary between n2,min and n2,max and the program searches for an optimal adaptive design

as introduced in Chapter 5. The remaining two optional parameters minpnext and en

can be used to further customize the optimization process.

Within the launch-function, first all design parameters are defined globally to allow

their use also within the branch and bound routines. Additionally, some other variables

that will be frequently used are calculated and defined globally. Later only the evaluated

expressions are used in order to save runtime. These variables include the probability

under the null and alternative hypothesis to observe exactly k responses out of n1 patients,

k ∈ 0, . . . , n1, which are stored in propp0 and propp1, respectively, and the possible

values of the discrete conditional error functions, which are calculated for each second-

stage sample size n2 between n2,min and n2,max and each number of responses, see (5.2).

The discrete conditional error function values are later used to calculate the (minimal) type

I error rate, see (4.7) and (5.1). The (minimal) type II error rate and the (minimal) average

sample sizes are calculated similarly, see (4.8), (4.9), (5.3) and (5.4). Therefore, for each

discrete conditional error function value the corresponding value of PrH1

{

P2,n2(k) ≤ D(k)
}

and the corresponding sample size are stored all together in the matrix possiblecef. As

mentioned in Chapter 5, it may be desirable to consider besides zero and one only discrete

conditional error function values that are away from zero or one by a certain amount. This

threshold is defined by the second optional parameter minpnext. As standard it is set

equal to zero.

Before the actual branch-and-bound algorithm is started with the first branching step,

the counter for the number of fully evaluated designs is set equal to zero and a first guess

for the average sample size is handed over by the third optional parameter en. If this

parameter is not specified, the very conservative value of n1 + n2,max is used. As the

algorithm fully evaluates only designs that can lead to smaller average sample sizes, see

(4.9), a reasonable first choice can significantly speed up the optimization process. After

completion of the searching procedure, the optimal combination of discrete conditional

error function values and second-stage sample sizes is printed out together with the design

characteristics.
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A.3.2. Branch-function

Source code A.4: Branch-and-bound – Branch-function

branch <- function(k,j){

if (k < count_n1){

#Deeper into the tree

for (jiter in j:set_P_2){

niter[k+1]<<-jiter #Built up index-vector

if(bound(k+1,jiter)){ #Bounding

branch(k+1,jiter) #Branching

}

}

}

else{

#Output solution if index-vector is defined completely

i<<-i+1

en<<-drop(dcss[niter] %*% propp0)

combination<<-niter

print(en)

print(niter)

}

}

The branch-function recursively defines the layout of the discrete conditional error func-

tion. The recursion starts with defining the discrete conditional error function for k = 0

responses and ends when the layout is defined for 0 to n1 responses. However, instead of

directly defining recursively the real-valued discrete conditional error function, we built up

an integer based index-vector niter. The ith-element of the index-vector defines which

value of the increasingly ordered set P2 is used for D(i− 1). Therefore, the index-vector

is of length n1 + 1 and each element can range between one and the number of different

discrete conditional error function values |P2|.

The branch-function checks first, if the index-vector and therefore the layout of the

discrete conditional error function is already defined completely. If the index vector is
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defined only up to k < n1 responses, the branch-function splits the optimization problem

into similar sub-problems. In each sub-problem, the index level used for k + 1 responses

is set equal to a specific value out of all possible index values, that are at least as large as

the index value for k responses. This restriction ensures monotonicity of the underlying

discrete conditional error function, i.e., D(k + 1) ≥ D(k). The bound-subroutine then

checks for each sub-problem, if it can lead to the optimal design. If not, the recursion is

stopped. Otherwise, the branch-function is recursively invoked again. Note that in case

that the current branching step has fully defined the discrete conditional error function,

the bound-function checks if a new solution to the optimization process has been found.

In that case the next branch-function stops the recursion, increases the counter for fully

evaluated designs by one and prints the expected sample size together with the index

vector of the corresponding design.

A.3.3. Bound-function

Source code A.5: Branch-and-bound – Bound-function

bound <- function(k,j){

mindcef <- if (k < count_n1){

drop(dcef[niter[1:k]] %*% propp0[1:k]) + dcef[j] * sum(

propp0[(k+1):count_n1])

}

else

{

drop(dcef[niter] %*% propp0)

}

if(mindcef > nominalalpha) {

return(FALSE)

}

else {

maxdcpf <- if (k < count_n1){

drop(dcpf[niter[1:k]] %*% propp1[1:k]) + sum(propp1[(k

+1):count_n1])

}

else

{

drop(dcpf[niter] %*% propp1)
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}

if(maxdcpf < nominalpower) {

return(FALSE)

}

else

{

minen <- if (k < count_n1){

drop(dcss[niter[1:k]] %*% propp0[1:k]) + n1 * sum(

propp0[(k+1):count_n1])

}

else

{

drop(dcss[niter] %*% propp0)

}

if(minen > en) {

return(FALSE)

}

else

{

if(k==1 & j>1) {

return(FALSE)

}

else

{

return(TRUE) #Further branching only if no restraints

are fulfilled

}

}

}

}

}

The bound-function checks within the branch-recursion, if the current sub-problem can

lead to an optimal solution. Therefore, it checks if the considered sub-problem shows a

minimal type I error rate (4.7) smaller or equal to the nominal significance level, a minimal

type II error rate (4.8) smaller or equal to the nominal value and a minimal average sample

size at least as large as the smallest average sample size found for all designs considered so



A.3. Branch-and-bound 111

far. If all these conditions are fulfilled, the bound-function returns TRUE and otherwise

FALSE.

Note that, if the bound-function is invoked when the discrete conditional error function is

defined completely, it checks if the design satisfies the type I and II error rate constraints

(5.1, 5.3) and leads to a smaller average sample size (5.4). In this case, a new optimal

solution to the test problem has been found.

A.3.4. Modifications

The branch-and-bound approach as given so far identifies the designs that minimize the

average sample size under the null hypothesis. It can easily be modified to optimize the

design with respect to other optimization criteria. Mander and Thompson (2010) and

Mander et al. (2012) constructed, for example, fixed designs that are optimal with respect

to the alternative hypothesis. It is straightforward to identify with the branch-and-bound

approach flexible designs as in Chapter 4 or adaptive designs as in Chapter 5 that are

optimal with respect to the same criteria.

Note that the average sample size under the alternative hypothesis is calculated as

EN(π1) =

n1
∑

k=0

{

n1 + n2(k)
}

· PrH1(K = k).

The minimal average sample size of all following sub-problems after m+1 branching steps,

i.e., when the conditional error function is defined for 0 to m responses, is given by

EN(π1)min =
m
∑

k=0

{

n1 + n2(k)
}

· PrH1(K = k) + n1 ·
n1
∑

k=m+1

PrH1(K = k).

Therefore, only the corresponding statement in the Bound-function source code A.5 needs

to be replaced by the following code snippet.

Source code A.6: Branch-and-bound – Modification

minen <- if (k < count_n1){

drop(dcss[niter[1:k]] %*% propp1[1:k]) + n1 * sum(propp1[(k+1)

:count_n1])

}

else

{

drop(dcss[niter] %*% propp1)

}





B
Additional Tables

B.1. Simon’s design

Table B.1.: Simon’s optimal designs (π1 − π0 = 0.15)

π0 π1 α β l1 n1 l2 n2 n EN(π0) α′ β′

0.05 0.20 0.05 0.2 0 10 3 19 29 17.6 0.047 0.199
0.05 0.1 1 21 4 20 41 26.7 0.046 0.098

0.10 0.25 0.05 0.2 2 18 7 25 43 24.7 0.048 0.200
0.05 0.1 2 21 10 45 66 36.8 0.050 0.098

0.20 0.35 0.05 0.2 5 22 19 50 72 35.4 0.049 0.200
0.05 0.1 8 37 22 46 83 51.4 0.049 0.099

0.30 0.45 0.05 0.2 9 27 30 54 81 41.7 0.050 0.198
0.05 0.1 13 40 40 70 110 60.8 0.048 0.099

0.40 0.55 0.05 0.2 11 26 40 58 84 44.9 0.049 0.195
0.05 0.1 19 45 49 59 104 64.0 0.050 0.100

0.50 0.65 0.05 0.2 15 28 48 55 83 43.7 0.047 0.198
0.05 0.1 22 42 60 63 105 62.3 0.050 0.099

0.60 0.75 0.05 0.2 17 27 46 40 67 39.3 0.047 0.200
0.05 0.1 21 34 64 61 95 55.6 0.048 0.099

0.70 0.85 0.05 0.2 14 19 46 40 59 30.3 0.049 0.193
0.05 0.1 18 25 61 54 79 43.4 0.049 0.096

0.80 0.95 0.05 0.2 7 9 26 20 29 17.7 0.049 0.198
0.05 0.1 16 19 37 23 42 24.4 0.048 0.097
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Table B.2.: Simon’s minimax designs (π1 − π0 = 0.15)

π0 π1 α β l1 n1 l2 n2 n EN(π0) α′ β′

0.05 0.20 0.05 0.2 0 13 3 14 27 19.8 0.042 0.199
0.05 0.1 1 29 4 9 38 32.9 0.039 0.100

0.10 0.25 0.05 0.2 2 22 7 18 40 28.8 0.040 0.197
0.05 0.1 3 31 9 24 55 40.0 0.042 0.099

0.20 0.35 0.05 0.2 6 31 15 22 53 40.4 0.050 0.198
0.05 0.1 8 42 21 35 77 58.4 0.044 0.100

0.30 0.45 0.05 0.2 16 46 25 19 65 49.6 0.050 0.197
0.05 0.1 27 77 33 11 88 78.5 0.050 0.099

0.40 0.55 0.05 0.2 28 59 34 11 70 60.1 0.050 0.198
0.05 0.1 24 62 45 32 94 78.9 0.049 0.100

0.50 0.65 0.05 0.2 39 66 40 2 68 66.1 0.049 0.199
0.05 0.1 28 57 54 36 93 75.0 0.048 0.100

0.60 0.75 0.05 0.2 18 30 43 32 62 43.8 0.047 0.198
0.05 0.1 48 72 57 12 84 73.2 0.050 0.100

0.70 0.85 0.05 0.2 16 23 39 26 49 34.4 0.047 0.199
0.05 0.1 33 44 53 24 68 48.5 0.049 0.098

0.80 0.95 0.05 0.2 7 9 26 20 29 17.7 0.049 0.198
0.05 0.1 31 35 35 5 40 35.3 0.049 0.100
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B.2. Proposed design

Table B.3.: Design characteristics of optimal flexible designs (π1 − π0 = 0.15)

Proposed

method Simon (1989)

Mander and

Thompson (2010)
π0 π1 α β n EN(π0) n EN(π0) n EN(π0)

0.05 0.20 0.05 0.20 29 17.60 29 17.62 29 17.60
0.10 43 26.07 41 26.66 41 26.60

0.1 0.25 0.05 0.20 43 24.49 43 24.66 43 24.49
0.10 66 36.24 66 36.82 63 36.63

0.2 0.35 0.05 0.20 63 35.11 72 35.37 72 35.29
0.10 87 50.90 83 51.45 83 51.29

0.3 0.45 0.05 0.20 77 41.49 81 41.71 81 41.69
0.10 103 60.08 110 60.77 100 60.22

0.4 0.55 0.05 0.20 81 44.12 84 44.93 84 44.78
0.10 104 63.91 104 63.96 104 63.91

0.5 0.65 0.05 0.20 81 43.12 83 43.72 83 43.37
0.10 109 61.91 105 62.29 105 62.26

0.6 0.75 0.05 0.20 75 38.56 67 39.35 78 39.00
0.10 97 55.02 95 55.60 95 55.52

0.7 0.85 0.05 0.20 60 30.14 59 30.29 60 30.14
0.10 75 42.57 79 43.40 80 43.24

0.8 0.95 0.05 0.20 29 17.72 29 17.72 29 17.72
0.10 42 24.45 42 24.45 42 24.45
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Table B.4.: Design characteristics of minimax flexible designs (π1 − π0 = 0.15)

Proposed

method Simon (1989)

Mander and

Thompson (2010)
π0 π1 α β n EN(π0) n EN(π0) n EN(π0)

0.05 0.20 0.05 0.20 26 24.20 27 19.81 27 18.60
0.10 38 28.33 38 32.86 38 28.33

0.1 0.25 0.05 0.20 38 29.85 40 28.84 38 33.94
0.10 53 41.39 55 40.03 53 47.87

0.2 0.35 0.05 0.20 53 40.41 53 40.44 53 40.41
0.10 74 59.68 77 58.42 76 66.51

0.3 0.45 0.05 0.20 64 48.10 65 49.63 64 51.32
0.10 88 68.30 88 78.51 88 78.45

0.4 0.55 0.05 0.20 69 49.88 70 60.07 69 54.17
0.10 94 74.24 94 78.88 94 76.30

0.5 0.65 0.05 0.20 67 56.40 68 66.11 68 66.04
0.10 93 69.84 93 75.00 93 72.20

0.6 0.75 0.05 0.20 61 45.39 62 43.79 62 42.88
0.10 84 60.12 84 73.20 84 73.13

0.7 0.85 0.05 0.20 49 33.17 49 34.44 49 34.36
0.10 65 48.84 68 48.52 65 50.46

0.8 0.95 0.05 0.20 29 17.72 29 17.72 29 17.72
0.10 40 27.98 40 35.30 40 35.21



B.2. Proposed design 117

T
a
b
le

B
.5

.:
D

is
cr

et
e

co
n
d
it
io

n
a
l
er

ro
r

fu
n
ct

io
n

fo
r

o
p
ti
m

a
l
fl
ex

ib
le

d
es

ig
n
s

π
0

π
1

α
β

n
1

n
2

D
is

cr
et

e
co

n
d
it

io
n
a
l
er

ro
r

fu
n
ct

io
n

0
.0

5
0
.2

0
.0

5
0
.2

1
0

1
9

p
1

0
.4

0
1
3

0
.0

8
6
1

0
.0

1
1
5

D
(p

1
)

0
.0

7
0

0
.2

5
9

0
.7

2
4

0
.0

5
0
.1

2
0

2
3

p
1

0
.2

6
4
2

0
.0

7
5
5

0
.0

1
5
9

0
.0

0
2
6

3
e-

0
4

D
(p

1
)

0
.1

0
5

0
.3

2
1

0
.6

9
3

0
.6

9
5

0
.7

1
3

0
.1

0
.2

5
0
.0

5
0
.2

1
8

2
5

p
1

0
.2

6
6
2

0
.0

9
8
2

0
.0

2
8
2

D
(p

1
)

0
.0

9
9

0
.2

3
9

0
.4

7
0
.0

5
0
.1

2
6

4
0

p
1

0
.2

5
9
1

0
.1

1
1
8

0
.0

3
9
9

0
.0

1
1
9

D
(p

1
)

0
.1

0
0

0
.2

0
7

0
.3

7
3

0
.7

8
4

0
.2

0
.3

5
0
.0

5
0
.2

2
3

4
0

p
1

0
.3

0
5
3

0
.1

5
9
8

0
.0

7
1
5

0
.0

2
7
3

0
.0

0
8
9

D
(p

1
)

0
.0

8
8

0
.1

6
1

0
.2

6
9

0
.2

7
0
.5

6
8

0
.0

5
0
.1

3
3

5
4

p
1

0
.3

3
4
3

0
.2

0
0

0
.1

0
6
8

0
.0

5
0
8

0
.0

2
1
6

0
.0

0
8
2

D
(p

1
)

0
.0

6
0

0
.1

0
7

0
.1

7
8

0
.2

7
4

0
.5

2
7

0
.7

8
0
.3

0
.4

5
0
.0

5
0
.2

2
5

5
2

p
1

0
.3

2
3
1

0
.1

8
9
4

0
.0

9
7
8

0
.0

4
4
2

0
.0

1
7
5

D
(p

1
)

0
.0

7
2

0
.1

2
0

0
.1

8
9

0
.2

7
9

0
.5

0
5

0
.0

5
0
.1

4
3

6
0

p
1

0
.2

9
1
9

0
.1

9
1
9

0
.1

1
6
9

0
.0

6
5
8

0
.0

3
4
2

0
.0

1
6
4

D
(p

1
)

0
.0

6
3

0
.1

0
4

0
.1

6
2

0
.2

3
8

0
.4

3
7

0
.5

4
9

0
.4

0
.5

5
0
.0

5
0
.2

2
8

5
3

p
1

0
.3

0
5
0

0
.1

8
6
8

0
.1

0
2
5

0
.0

4
9
9

0
.0

2
1
5

0
.0

0
8
1

0
.0

0
2
7

D
(p

1
)

0
.0

7
0

0
.1

1
5

0
.2

5
8

0
.2

5
8

0
.4

6
3

0
.5

7
5

0
.5

7
7

0
.0

5
0
.1

4
5

5
9

p
1

0
.3

2
1
4

0
.2

2
2
3

0
.1

4
3
6

0
.0

8
6
5

0
.0

4
8
3

0
.0

2
5

0
.0

1
2

0
.0

0
5
3

0
.0

0
21

D
(p

1
)

0
.0

6
0

0
.0

9
8

0
.1

5
1

0
.2

2
0
.3

0
6

0
.4

0
4

0
.5

1
1

0
.6

1
9

0
.6

3
0
.5

0
.6

5
0
.0

5
0
.2

2
8

5
3

p
1

0
.2

8
5
8

0
.1

7
2
5

0
.0

9
2
5

0
.0

4
3
6

0
.0

1
7
8

0
.0

0
6
3

0
.0

0
1
9

D
(p

1
)

0
.0

8
4

0
.1

3
6

0
.2

0
5

0
.3

9
2

0
.5

0
.5

0
.7

0
9

0
.0

5
0
.1

4
0

6
9

p
1

0
.3

1
7
9

0
.2

1
4
8

0
.1

3
4
1

0
.0

7
6
9

0
.0

4
0
3

0
.0

1
9
2

0
.0

0
8
3

0
.0

0
3
2

0
.0

0
1
1

D
(p

1
)

0
.0

7
4

0
.1

1
4

0
.1

6
8

0
.2

3
5

0
.3

1
5

0
.4

0
5

0
.4

0
6

0
.5

0
2

0
.5

0
5

0
.6

0
.7

5
0
.0

5
0
.2

2
5

5
0

p
1

0
.2

7
3
5

0
.1

5
3
6

0
.0

7
3
6

0
.0

2
9
4

0
.0

0
9
5

D
(p

1
)

0
.0

9
7

0
.1

5
9

0
.2

4
2

0
.4

5
8

0
.4

7
9

0
.0

5
0
.1

3
8

5
9

p
1

0
.2

8
9
7

0
.1

8
6
4

0
.1

0
8
9

0
.0

5
7
2

0
.0

2
6
8

0
.0

1
1
0

0
.0

0
4
0

D
(p

1
)

0
.0

8
6

0
.1

3
8

0
.2

0
6

0
.2

9
1

0
.2

9
1

0
.4

9
4

0
.6

0
0

0
.7

0
.8

5
0
.0

5
0
.2

1
9

4
1

p
1

0
.2

8
2
2

0
.1

3
3
2

0
.0

4
6
2

D
(p

1
)

0
.0

9
6

0
.1

7
4

0
.2

8
3

0
.0

5
0
.1

3
0

4
5

p
1

0
.2

8
1
4

0
.1

5
9
5

0
.0

7
6
6

0
.0

3
0
2

0
.0

0
9
3

D
(p

1
)

0
.0

9
3

0
.1

6
5

0
.2

6
2

0
.3

8
0

0
.3

8
1

0
.8

0
.9

5
0
.0

5
0
.2

9
2
0

p
1

0
.4

3
6
2

0
.1

3
4
2

D
(p

1
)

0
.0

7
2

0
.2

1
1

0
.0

5
0
.1

1
9

2
3

p
1

0
.2

3
6
9

0
.0

8
2
9

0
.0

1
4
4

D
(p

1
)

0
.1

3
7

0
.3

0
6

0
.5

4
6



118 Chapter B. Additional Tables

T
a
b
le

B
.6

.:
D

iscrete
co

n
d
itio

n
a
l
erro

r
fu

n
ctio

n
fo

r
m

in
im

a
x

fl
exible

d
esign

s

π
0

π
1

α
β

n
1
n
2

D
iscrete

co
n
d
itio

n
a
l
erro

r
fu

n
ctio

n

0
.0

5
0
.2

0
.0

5
0
.2

2
1

5
p
1

0
.6

5
9
4

0
.2

8
3

0
.0

8
4
9

D
(p

1 )
0
.0

2
5

0
.0

2
8

0
.2

4
2

0
.0

5
0
.1

2
4

1
4

p
1

0
.3

3
9
2

0
.1

1
5
9

D
(p

1 )
0
.0

3
1

0
.1

5
5

0
.1

0
.2

5
0
.0

5
0
.2

1
9

1
9

p
1

0
.5

7
9
7

0
.2

9
4
6

0
.1

1
5
0

0
.0

3
5
2

D
(p

1 )
0
.0

3
6

0
.0

3
6

0
.1

1
6

0
.5

8
4

0
.0

5
0
.1

2
8

2
5

p
1

0
.5

4
0
6

0
.3

0
5
4

0
.1

4
2
1

0
.0

5
5

0
.0

1
7
9

D
(p

1 )
0
.0

1
0

0
.0

9
8

0
.0

9
8

0
.2

3
7

0
.7

3
0
.2

0
.3

5
0
.0

5
0
.2

3
1

2
2

p
1

0
.4

2
8
9

0
.2

7
0
0

0
.1

5
0
8

0
.0

7
4
6

0
.0

3
2
7

0
.0

1
2
7

0
.0

0
4
4

D
(p

1 )
0
.0

2
0

0
.0

5
6

0
.1

3
3

0
.2

6
8

0
.4

5
8

0
.6

7
1

0
.8

5
3

0
.0

5
0
.1

4
7

2
7

p
1

0
.4

7
0
8

0
.3

3
3
1

0
.2

1
7
4

0
.1

3
0
6

0
.0

7
2
1

0
.0

3
6
6

0
.0

1
7
1

0
.0

0
7
4

0
.00

2
9

D
(p

1 )
0
.0

1
1

0
.0

3
0

0
.0

7
4

0
.1

5
6

0
.2

8
7

0
.4

6
1

0
.4

6
2

0
.6

5
3

0
.9

8
3

0
.3

0
.4

5
0
.0

5
0
.2

3
2

3
2

p
1

0
.5

0
4
9

0
.3

5
6
0

0
.2

2
8
3

0
.1

3
2
6

0
.0

6
9
4

0
.0

3
2
7

0
.0

1
3
8

0
.0

0
5
2

D
(p

1 )
0
.0

1
4

0
.0

3
3

0
.0

7
0

0
.1

3
3

0
.3

5
6

0
.3

5
7

0
.5

0
6

0
.7

9
2

0
.0

5
0
.1

5
1

3
7

p
1

0
.4

6
7
5

0
.3

5
0
5

0
.2

4
7
3

0
.1

6
3
7

0
.1

0
1
5

0
.0

5
8
9

0
.0

3
1
9

0
.0

1
6
1

0
.00

7
6

0
.0

0
3
3

0
.0

0
1
4

5
e-0

4
2
e-0

4
D
(p

1 )
0
.0

1
3

0
.0

2
9

0
.0

6
0

0
.1

1
3

0
.1

9
3

0
.3

0
2

0
.4

3
4

0
.5

7
6

0
.5

7
6

0
.8

2
4

0.8
2
4

0
.8

2
4

0
.9

8
3

0
.4

0
.5

5
0
.0

5
0
.2

3
7

3
2

p
1

0
.4

0
3
2

0
.2

8
1
9

0
.1

8
2
0

0
.1

0
8
0

0
.0

5
8
6

0
.0

2
9
0

0
.0

1
3
1

0
.0

0
5
3

0
.00

2
D
(p

1 )
0
.0

4
6

0
.0

4
6

0
.0

9
2

0
.1

6
5

0
.2

6
8

0
.5

3
9

0
.5

3
9

0
.6

7
9

0
.8

8
9

0
.0

5
0
.1

5
4

4
0

p
1

0
.5

0
7
3

0
.3

9
8
1

0
.2

9
6
7

0
.2

0
9
4

0
.1

3
9
6

0
.0

8
7
7

0
.0

5
1
8

0
.0

2
8
7

0
.01

4
9

0
.0

0
7
2

0
.0

0
3
3

D
(p

1 )
0
.0

0
8

0
.0

1
9

0
.0

3
9

0
.0

7
4

0
.1

3
0
.2

0
9

0
.3

1
2

0
.4

3
2

0
.6

8
3

0
.6

8
3

0
.9

6
6

0
.5

0
.6

5
0
.0

5
0
.2

4
8

1
9

p
1

0
.4

4
2
7

0
.3

3
2
7

0
.2

3
5
4

0
.1

5
6
2

0
.0

9
6
7

0
.0

5
5
7

0
.0

2
9
7

0
.0

1
4
7

0
.00

6
6

0
.0

0
2
8

0
.0

0
1

D
(p

1 )
0
.0

1
0

0
.0

1
0

0
.0

3
2

0
.0

8
4

0
.3

2
4

0
.3

2
4

0
.5

0
0

0
.6

7
6

0
.8

2
1

0
.9

6
9

0.9
7

0
.0

5
0
.1

5
5

3
8

p
1

0
.3

9
3
9

0
.2

9
5
0

0
.2

0
9
4

0
.1

4
0
3

0
.0

8
8
5

0
.0

5
2
4

0
.0

2
9

0
.0

1
5

0
.0

0
72

D
(p

1 )
0
.0

1
7

0
.0

3
7

0
.0

7
2

0
.1

2
8

0
.2

0
9

0
.3

1
4

0
.5

6
5

0
.5

6
5

0
.7

9
3

0
.6

0
.7

5
0
.0

5
0
.2

3
2

2
9

p
1

0
.4

6
1
8

0
.3

2
3
3

0
.2

0
4
6

0
.1

1
5
6

0
.0

5
7
5

0
.0

2
4
8

0
.0

0
9
1

0
.0

0
2
8

7
e-0

4
D
(p

1 )
0
.0

2
3

0
.0

5
7

0
.1

1
9

0
.1

1
9

0
.3

4
3

0
.3

4
3

0
.6

3
8

0
.6

3
9

0
.7

7
1

0
.0

5
0
.1

4
3

4
1

p
1

0
.4

1
7
8

0
.3

0
1
3

0
.2

0
1
3

0
.1

2
3
8

0
.0

6
9
5

0
.0

3
5
4

0
.0

1
6
2

0
.0

0
6
6

0
.00

2
4

7
e-0

4
D
(p

1 )
0
.0

1
2

0
.0

5
7

0
.1

0
6

0
.1

7
8

0
.2

7
5

0
.3

9
1

0
.3

9
2

0
.6

4
2

0
.6

4
4

0
.8

5
0
.7

0
.8

5
0
.0

5
0
.2

2
5

2
4

p
1

0
.3

4
0
7

0
.1

9
3
5

0
.0

9
0
5

0
.0

3
3
2

0
.0

0
9
0

0
.0

0
1
6

D
(p

1 )
0
.0

4
3

0
.1

1
1

0
.2

2
9

0
.5

6
6

0
.5

6
8

0
.7

4
4

0
.0

5
0
.1

3
7

2
8

p
1

0
.4

2
4
1

0
.2

8
8
9

0
.1

7
6
3

0
.0

9
4
7

0
.0

4
4

0
.0

1
7
2

0
.0

0
5
5

D
(p

1 )
0
.0

1
6

0
.0

4
8

0
.1

1
3

0
.2

2
1

0
.3

6
6

0
.6

8
5

0
.6

9
0
.8

0
.9

5
0
.0

5
0
.2

9
2
0

p
1

0
.4

3
6
2

0
.1

3
4
2

D
(p

1 )
0
.0

7
2

0
.2

1
1

0
.0

5
0
.1

2
2

1
8

p
1

0
.3

3
2
0

0
.1

5
4
5

0
.0

4
8

0
.0

0
7
4

D
(p

1 )
0
.0

1
9

0
.2

7
2

0
.2

7
4

0
.8

8
4



Bibliography

Adjei, A. A., Christian, M., and Ivy, P. (2009). Novel designs and end points for phase II

clinical trials. Clinical Cancer Research, 15:1866–1872.

Armitage, P., McPherson, C. K., and Rowe, B. C. (1969). Repeated significance tests

on accumulating data. Journal of the Royal Statistical Society. Series A (General),

132:235–244.

Ayanlowo, A. O. and Redden, D. (2008). A two stage conditional power adaptive design

adjusting for treatment by covariate interaction. Contemporary Clinical Trials, 29:428–

438.

Banerjee, A. and Tsiatis, A. A. (2006). Adaptive two-stage designs in phase II clinical

trials. Statistics in Medicine, 25:3382–3395.

Bauer, P. (1989a). Multistage testing with adaptive designs. Biometrie und Informatik in

Medizin und Biologie, 20:130–148.

Bauer, P. (1989b). Sequential tests of hypotheses in consecutive trials. Biometrical Journal,

6:663–676.

Bauer, P. (2008). Adaptive designs: Looking for a needle in the haystack—a new challenge

in medical research. Statistics in Medicine, 27:1565–1580.

Bauer, P. and Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses.

Biometrics, 50:1029–1041.

Bauer, P. and Kieser, M. (1999). Combining different phases in the development of medical

treatments within a single trial. Statistics in Medicine, 18:1833–1848.

Bauer, P. and König, F. (2006). The reassessment of trial perspectives from interim

data—a critical view. Statistics in Medicine, 25:23–36.

Brannath, W., König, F., and Bauer, P. (2006). Estimation in flexible two stage designs.

Statistics in Medicine, 25:3366–3381.

Brannath, W., Koenig, F., and Bauer, P. (2007). Multiplicity and flexibility in clinical

trials. Pharmaceutical Statistics, 6:205–216.



120 Bibliography

Brannath, W., Posch, M., and Bauer, P. (2002). Recursive combination tests. Journal of

the American Statistical Association, 97:236–244.

Bretz, F., Koenig, F., Brannath, W., Glimm, E., and Posch, M. (2009). Adaptive designs

for confirmatory clinical trials. Statistics in Medicine, 28:1181–1217.

Chang, M. (2007). Adaptive design method based on sum of p-values. Statistics in

Medicine, 26:2772–2784.

Chang, M. N., Shuster, J. J., and Hou, W. (2012). Improved two-stage tests for stratified

phase II cancer clinical trials. Statistics in Medicine, 31:1688–1698.

Chang, M. N., Therneau, T. M., Wieand, H. S., and Cha, S. S. (1987). Designs for group

sequential phase II clinical trials. Biometrics, 43:865–874.

Chen, C.-M. and Chi, Y. (2011). Curtailed two-stage designs with two dependent binary

endpoints. Pharmaceutical Statistics, 11:57–62.

Chen, T. T. (1997). Optimal three-stage designs for phase II cancer clinical trials. Statistics

in Medicine, 16:2701–2711.

Chen, T. T. and Ng, T.-H. (1998). Optimal flexible designs in phase II clinical trials.

Statistics in Medicine, 17:2301–2312.

Chow, S.-C. and Chang, M. (2008). Adaptive design methods in clinical trials – a review.

Orphanet Journal of Rare Diseases, 3:11.

Chow, S.-C., Chang, M., and Pong, A. (2005). Statistical consideration of adaptive meth-

ods in clinical development. Journal of Biopharmaceutical Statistics, 15:575–591.

Chow, S.-C., Shao, J., and Wang, H. (2008). Sample Size Calculations in Clinical Research.

Chapman & Hall / CRC, Boca Raton, second edition. ISBN 978-1584889823.

Coburger, S. and Wassmer, G. (2001). Conditional point estimation in adaptive group

sequential test designs. Biometrical Journal, 43:821–833.

Combs, S. E., Kieser, M., Habermehl, D., Weitz, J., Jäger, D., Fossati, P., Orrechia,

R., Engenhart-Cabillic, R., Pötter, R., Dosanjh, M., Jäkel, O., Büchler, M. W., and

Debus, J. (2012). Phase I/II trial evaluating carbon ion radiotherapy for the treatment

of recurrent rectal cancer: the PANDORA-01 trial. BMC Cancer, 12:137.

Committee for Medicinal Products for Human Use (2007). Reflection paper on method-

ological issues in confirmatory clinical trials planned with an adaptive design. CHM-

P/EWP/2459/02.



Bibliography 121

Cui, L., Hung, H. M. J., and Wang, S.-J. (1999). Modification of sample size in group

sequential clinical trials. Biometrics, 55:853–857.

DeMets, D. L. and Lan, K. K. G. (1994). Interim analysis: The alpha spending function

approach. Statistics in Medicine, 13:1341–1352.

Dette, H., Bornkamp, B., and Bretz, F. (2012). On the efficiency of two-stage response-

adaptive designs. Statistics in Medicine, DOI 10.1002/sim.5555.

Dong, G., Shih, W. J., Moore, D., Quan, H., and Marcella, S. (2012). A bayesian-

frequentist two-stage single-arm phase II clinical trial design. Statistics in Medicine,

DOI 10.1002/sim.5330.

Eisenhauer, E. A., Therasse, P., Bogaerts, J., Schwartz, L. H., Sargent, D., Ford, R.,

Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., Dodd,

L., Kaplan, R., Lacombe, D., and Verweij, J. (2009). New response evaluation criteria

in solid tumours: revised recist guideline (version 1.1). European Journal of Cancer,

45:228–247.

Englert, S. and Kieser, M. (2012a). Adaptive designs for single-arm phase II trials in

oncology. Pharmaceutical Statistics, 11:241–249.

Englert, S. and Kieser, M. (2012b). Improving the flexibility and efficiency of phase II

designs for oncology trials. Biometrics, 68:886–892.

Englert, S. and Kieser, M. (2013a). An approach for unplanned sample size changes in

one-armed phase II cancer clinical trials. In 3rd Joint Statistical Meeting DAGStat 2013.

Englert, S. and Kieser, M. (2013b). Optimal adaptive two-stage designs for phase II cancer

clinical trials. Biometrical Journal, under review.

Ensign, L. G., Gehan, E. A., Kamen, D. S., and Thall, P. F. (1994). An optimal three-stage

design for phase II clinical trials. Statistics in Medicine, 13:1727–1736.

FDA (2004). Challenge and opportunity on the critical path to new medical products.

Technical report, U.S. Department of Health and Human Services.

FDA (2006). Critical path opportunities list. Technical report, U.S. Department of Health

and Human Services.

FDA (2010). Guidance for industry: Adaptive design clinical trials for drugs and biologics.

Technical report, U.S. Department of Health and Human Services.

Fleming, T. R. (1982). One-sample multiple testing procedure for phase II clinical trials.

Biometrics, 38:143–151.



122 Bibliography

Fleming, T. R. (2006). Standard versus adaptive monitoring procedures: A commentary.

Statistics in Medicine, 25:3305–3312.

Friede, T. and Kieser, M. (2004). Sample size recalculation for binary data in internal

pilot study designs. Pharmaceutical Statistics, 3:269–279.

Gallo, P. (2006a). Confidentiality and trial integrity issues for adaptive designs. Drug

Information Journal, 40:445–450.

Gallo, P. (2006b). Operational challenges in adaptive design implementation. Pharma-

ceutical Statistics, 5:119–124.

Gallo, P., Chuang-Stein, C., Dragalin, V., Gaydos, B., Krams, M., and Pinheiro, J. (2006).

Adaptive designs in clinical drug development – an executive summary of the PhRMA

working group. Journal of Biopharmaceutical Statistics, 16:275–283.

Gan, H. K., Grothey, A., Pond, G. R., Moore, M. J., Siu, L. L., and Sargent, D. (2010).

Randomized phase II trials: Inevitable or inadvisable? Journal of Clinical Oncology,

28:2641–2647.

Gould, A. L. (1995). Planning and revising the sample size for a trial. Statistics in

Medicine, 14:1039–51; discussion 1053–5.

Green, S. J. and Dahlberg, S. (1992). Planned versus attained design in phase II clinical

trials. Statistics in Medicine, 11:853–862.

Hanfelt, J. J., Slack, R. S., and Gehan, E. A. (1999). A modification of Simon’s optimal

design for phase II trials when the criterion is median sample size. Controlled Clinical

Trials, 20:555–566.

Hou, W., Chang, M. N., Jung, S.-H., and Li, Y. (2013). Designs for randomized phase II

clinical trials with two treatment arms. Statistics in Medicine, accepted.

Hung, H. M. J., O’Neill, R., Wang, S.-J., and Lawrence, J. (2006). A regulatory view on

adaptive/flexible clinical trial design. Biometrical Journal, 48:565–573.

ICH Topic E 8 (1998). General considerations for clinical trials. CPMP/ICH/291/95.

ICH Topic E 9 (1998). Statistical principles for clinical trials. CPMP/ICH/363/96.

Jennison, C. and Turnbull, B. W. (2003). Mid-course sample size modification in clinical

trials based on the observed treatment effect. Statistics in Medicine, 22:971–933.

Jennison, C. and Turnbull, B. W. (2006). Efficient group sequential designs when there

are several effect sizes under consideration. Statistics in Medicine, 25:917–932.



Bibliography 123

Jin, H. and Wei, Z. (2012). A new adaptive design based on Simon’s two-stage optimal

design for phase II clinical trials. Contemporary Clinical Trials, 33:1255–1260.

Jones, C. L. and Holmgren, E. (2007). An adaptive Simon two-stage deign for phase 2

studies of targeted therapies. Contemporary Clinical Trials, 28:654–661.

Jung, S.-H., Lee, T., Kim, K., and George, S. L. (2004). Admissible two-stage designs for

phase II cancer clinical trials. Statistics in Medicine, 23:561–569.

Kieser, M., Bauer, P., and Lehmacher, W. (1999). Inference on multiple endpoints in

clinical trials with adaptive interim analysis. Biometrical Journal, 41:261–277.

Kieser, M. and Friede, T. (2000). Re-calculating the sample size in internal pilot study

designs with control of the type I error rate. Statistics in Medicine, 19:901–911.

Kieser, M. and Friede, T. (2003). Simple procedures for blinded sample size adjustment

that do not affect the type I error rate. Statistics in Medicine, 22:3571–3581.

Koyama, T. and Chen, H. (2008). Proper inference from Simon’s two-stage designs. Statis-

tics in Medicine, 27:3145–3154.

Kunz, C. U. and Kieser, M. (2011a). Optimal two-stage designs for single-arm phase II

oncology trials with two binary endpoints. Methods of Information in Medicine, 50:372–

377.

Kunz, C. U. and Kieser, M. (2011b). Simon’s minimax and optimal and Jung’s admissible

two-stage designs with or without curtailment. The Stata Journal, 11:240–254.

Kunz, C. U. and Kieser, M. (2012). Curtailment in singe-arm two-stage phase II oncology

trials. Biometrical Journal, 54:445–456.

Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials.

Biometrika, 70:659–663.

Lehmacher, W. and Wassmer, G. (1999). Adaptive sample size calculations in group

sequential trials. Biometrics, 55:1286–1290.

Levin, G. P., Emerson, S. C., and Emerson, S. S. (2012). Adaptive clinical trial designs

with pre-specified rules for modifying the sample size: understanding efficient types of

adaptation. Statistics in Medicine, DOI 10.1002/sim.5662.

Li, Y., Mick, R., and Heitjan, D. F. (2012). A Bayesian approach for unplanned sample

sizes in phase II cancer clinical trials. Clinical Trials, 9:293–302.

Lin, S. P. and Chen, T. T. (2000). Optimal two-stage designs for phase II clinical trials



124 Bibliography

with differentiation of complete and partial responses. Communications in Statistics –

Theory and Methods, 29:923–940.

Lin, X., Allred, R., and Andrews, G. (2008). A two-stage phase II trial design utilizing

both primary and secondary endpoints. Pharmaceutical Statistics, 7:88–92.

Lin, Y. and Shih, W. J. (2004). Adaptive two-stage designs for single-arm phase IIa cancer

clinical trials. Biometrics, 60:482–490.

Liu, G. F., Zhu, G. R., and Cui, L. (2008). Evaluating the adaptive performance of flexible

sample size designs with treatment difference in an interval. Statistics in Medicine,

27:584–596.

Liu, Q., Proschan, M. A., and Pledger, G. W. (2002). A unified theory of two-stage

adaptive designs. Journal of the American Statistical Association, 97:1034–1041.

London, W. B. and Chang, M. N. (2005). One- and two-stage designs for stratified phase

II clinical trials. Statistics in Medicine, 24:2597–2611.

Mander, A. and Thompson, S. (2010). Two-stage designs optimal under the alternative

hypothesis for phase II cancer clinical trials. Contemporary Clinical Trials, 31:572–578.

Mander, A. P., Wason, J. M. S., Sweeting, M. J., and Thompson, S. G. (2012). Admissible

two-stage designs for phase II cancer clinical trials that incorporate the expected sample

size under the alternative hypothesis. Pharmaceutical Statistics, 11:91–96.

Mariani, L. and Marubini, E. (1996). Design and analysis of phase II cancer trials: A review

of statistical methods and guidelines for medical researchers. International Statistical

Review, 64:61–88.

McPherson, K. (1982). On choosing the number of interim analyses in clinical trials.

Statistics in Medicine, 1:25–36.

Müller, H.-H. and Schäfer, H. (2001). Adaptive group sequential designs for clinical trials:

Combining the advantages of adaptive and of classical group sequential approaches.

Biometrics, 57:886–891.

Müller, H.-H. and Schäfer, H. (2004). A general statistical principle for changing a design

any time during the course of a trial. Statistics in Medicine, 23:2497–2508.

Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and Combinatorial Optimization.

Wiley, Hoboken. ISBN 978-0471359432.

O’Brian, P. C. and Fleming, T. R. (1979). A multiple testing procedure for clinical trials.

Biometrics, 35:549–556.



Bibliography 125

Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials.

Biometrika, 64:191–199.

Pong, A. and Chow, S.-C., editors (2010). Handbook of Adaptive Designs in Pharmaceutical

and Clinical Development. Chapman & Hall / CRC, Boca Raton. ISBN 978-1439810163.

Posch, M. and Bauer, P. (1999). Adaptive two stage designs and the conditional error

function. Biometrical Journal, 41:689–696.

Posch, M., Koenig, F., Branson, M., Brannath, W., Dunger-Baldauf, C., and Bauer,

P. (2005). Testing and estimation in flexible group sequential designs with adaptive

treatment selection. Statistics in Medicine, 24:3697–3714.

Proschan, M. A. and Hunsberger, S. A. (1995). Designed extension of studies based on

conditional power. Biometrics, 51:1315–1324.

R Development Core Team (2011). R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

http://www.R-project.org.

Sargent, D., Chang, V., and Goldberg, R. M. (2001). A three-outcome design for phase II

clinical trials. Controlled Clinical Trials, 22:117–125.

Schäfer, H., Timmesfeld, N., and Müller, H.-H. (2006). An overview of statistical ap-

proaches for adaptive designs and design modifications. Biometrical Journal, 48:507–

520.

Shih, W. J. (2006). Group sequential, sample size re-estimation and two-stage adaptive

designs in clinical trials: A comparison. Statistics in Medicine, 25:933–941.

Shuster, J. (2002). Optimal two-stage designs for single arm phase II cancer trials. Journal

of Biopharmaceutical Statistics, 12:39–51.

Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Controlled Clinical

Trials, 10:1–10.

Stewart, D. J. (2010). Randomized phase II trials: Misleading and unreliable. Journal of

Clinical Oncology, 28:e649–e650.

Stone, A., Wheeler, C., and Barge, A. (2007). Improving the design of phase II trials of

cytostatic anticancer agents. Contemporary Clinical Trials, 28:138–145.

Tan, M. T. and Xiong, X. (2010). A flexible multi-stage design for phase II oncology trials.

Pharmaceutical Statistics, 10:369–383.

Therasse, P., Arbuck, S. G., Eisenhauer, E. A., Wanders, J., Kaplan, R. S., Rubinstein, L.,

http://www.R-project.org


126 Bibliography

Verweij, J., Van Glabbeke, M., van Oosterom, A. T., Christian, M. C., and Gwyther,

S. G. (2000). New guidelines to evaluate the response to treatment in solid tumors.

Journal of the National Cancer Institute, 92:205–216.

Timmesfeld, N., Schäfer, H., and Müller, H.-H. (2007). Increasing the sample size during

clinical trials with t-distributed test statistics without inflating the type I error rate.

Statistics in Medicine, 26:2449–2464.

Tournoux-Facon, C., Rycke, Y. D., and Tubert-Bitter, P. (2011). How a new stratified

adaptive phase II design could improve targeting population. Statistics in Medicine,

30:1555–1562.

Tsiatis, A. A. and Mehta, C. (2003). On the inefficiency of the adaptive design for moni-

toring clinical trials. Biometrika, 90:367–378.

Tsimberidou, A.-M., Braiteh, F., Stewart, D. J., and Kurzrock, R. (2009). Ultimate

fate of oncology drugs approved by the US Food and Drug Administration without a

randomized trial. Journal of Clinical Oncology, 27:6243–6250.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica,

16:933–951.

Wang, S. K. and Tsiatis, A. A. (1987). Approximately optimal one-parameter boundaries

for group sequential trials. Biometrics, 43:193–199.

Wittes, J. and Brittain, E. (1990). The role of internal pilot studies in increasing the

efficiency of clinical trials. Statistics in Medicine, 9:65–71; discussion 71–2.

Wolsey, L. A. (1998). Integer Programming. Wiley, Hoboken. ISBN 978-0471283669.

Wu, Y. and Shih, W. J. (2008). Approaches to handling data when a phase II trial deviates

from the pre-specified Simon’s two-stage design. Statistics in Medicine, 27:6190–6208.



Index

Symbols

α spending function approach . . . . . . . . 12

p clud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 f.

A

Adaptive conditional test . . . . . . . . . . . . . 30

Adaptive design . . . . . . . . . . . . . . . . . . 12, 53

Definition . . . . . . . . . . . . . . . . . . . . . . . . 11

Admissible design . . . . . . . . . . . . . . . . . . . . . 8

Average performance score . . . . . . . . . . . 73

Average sample size . . . . . . . . . . . . . . . . . . . 7

B

Bayesian methods . . . . . . . . . . . . . . . . . . . . 95

Branch-and-bound algorithm. .44, 54, 58

C

Chang’s design . . . . . . . . . . . . . . . . . . . . . . . 28

Clinical trial example . . . . . . . . . . . . . . . . 87

Combination function . . . . . . . . . . . . . . . . 14

Fisher. . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Inverse normal . . . . . . . . . . . . . . . . . . . 14

Product of p-values . . . . . . . . . . . . . . 14

Sum of p-values . . . . . . . . . . . . . . . . . . 14

Combination test method. . . . . . . . . . . 13 f.

Conditional error function method 14, 16

Conditional invariance principle . . 17, 27,

32, 34

Conditional power . . . . . . . . . . . . . . . . 75, 92

Critical Path Opportunities List . . 11, 97

Curtailment . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

D

Discrete conditional error function . . . 22,

33, 41 f.

Modified . . . . . . . . . . . . . . . . . . . . . . . . . 34

Natural . . . . . . . . . . . . . . . . . . . . . . 24, 34

E

Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

EMA. . . see European Medicines Agency

European Medicines Agency . . . . . . . . . . . 1

F

FDA. . . . . . . . . . . . .see US Food and Drug

Administration

Fisher’s combination criterion . . . . . . . . 26

Fixed two-stage design based on combi-

nation test . . . . . . . . . . . . . . . . . . 26,

87

Average sample size . . . . . . . . . . . . . . 28

Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Type I error rate . . . . . . . . . . . . . . . . . 27

Flexible design . . . . . . . . . . . . . . . . . . . . . . . 12

Flexible two-stage design based on com-

bination test . . . . . . . . . . . . . . . . 30,

88

Flexible two-stage design based on condi-

tional error functions . . . . . . . . 33,

88



II Index

Full sequential design. . . . . . . . . . . . . . . . .12

G

Group-sequential design . . . . . . . . . . 12, 71

O’Brian Fleming . . . . . . . . . . . . . . . . . 12

Pocock . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I

Indicator function. . . . . . . . . . . .45, 92, 104

Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Internal pilot study . . . . . . . . . . . . . . . . . . 13

M

Mander’s design . . . . . . . . . . . . . . . . . . . . . . 40

Minimax design . . . . . . . . . . . . . . . . . . . . . . . 8

O

One-stage design

Sample size . . . . . . . . . . . . . . . . . . . . . . 73

Optimal design . . . . . . . . . . . . . . . . . . . . . . . . 8

Optimal design with respect to the alter-

native hypothesis . . . . . . . . . . . . 67,

111

Overrunning. . . . . . . . . . . . . . . .3, 10, 92, 95

P

PANDORA-01 trial . . . . . . . . . . . . . . . . . . 87

Per-design adaptive designs . . . . . . . . . . 12

Performance comparison . . . . . . . . . . . . . 76

Performance of flexible phase II designs

71

Performance score . . . . . . . . . . . . . . . . . . . . 73

Phase I study . . . . . . . . . . . . . . . . . . . . . . . . . 1

Phase II study . . . . . . . . . . . . . . . . . . . . . . . 1 f.

Average sample size. . . . . . . . . . . .7, 72

Oncology. . . . . . . . . . . . . . . . . . . . . . . . . .5

Overall power . . . . . . . . . . . . . . . . . . . . 72

Probability for early termination . . 7

Randomized. . . . . . . . . . . . . . . . . . . . . . .2

Single-arm . . . . . . . . . . . . . . . . . . . . . . . . 2

Type I error rate . . . . . . . . . . . . . . . . . . 7

Type II error rate . . . . . . . . . . . . . . . . . 7

Phase III study. . . . . . . . . . . . . . . . . . . . . . . .1

Phase IV study. . . . . . . . . . . . . . . . . . . . . . . .1

Probability for early termination . . . . . . 7

S

Sample size recalculation . . . . . . . . . . . . . 75

Simon’s design . . . . . . . . . . . . . . . . . . . . . 7, 35

Flexible version . . . . . . . . . . . . . . . . . . 35

Minimax . . . . . . . . . . . . . . . . . . . . . 9, 114

Optimal . . . . . . . . . . . . . . . . . . . . . . 8, 113

Stratified design . . . . . . . . . . . . . . . . . . . . . . . 8

U

Underrunning . . . . . . . . . . . . . . . . . . 3, 10, 95

US Food and Drug Administration . . 1 f.,

11, 97



Curriculum Vitae

Stefan Englert

born 3rd May 1986 in Schweinfurt, Germany

Education

University of Heidelberg
Doctoral student (Dr. sc. hum.) Since 02/2011

University of Würzburg
Diploma in mathematics (Dipl.-Math.) 09/2005 – 02/2010
Thesis: “Species richness estimation”

Alexander-von-Humboldt-Gymnasium Schweinfurt
University-entrance Diploma (Abitur) 09/1996 – 06/2005

Grundschule Euerbach 09/1992 – 08/1996

Professional experience

University of Heidelberg
Research assistant at the Institute of Medical Biometry and

Informatics

Since 03/2010

University of Würzburg
Member of a student initiative on statistical consulting 07/2008 – 02/2010

University of Würzburg
Teaching assistant at the Chair of Statistics at the Faculty

of Mathematics and Computer Science

04/2008 – 02/2010

University of Würzburg
Student assistant at the Faculty of Mathematics and Com-

puter Science

04/2007 – 03/2009



IV Curriculum Vitae

Publications

Methodological articles

Englert, S. and Kieser, M. (2012a). Adaptive designs for single-arm phase II trials in

oncology. Pharmaceutical Statistics, 11:241–249.

Englert, S. and Kieser, M. (2012b). Improving the flexibility and efficiency of phase II

designs for oncology trials. Biometrics, 68:886–892.

Englert, S. and Lorenzo Bermejo, J. (2011). Book review – handbook of adaptive deigns

in pharmaceutical and clinical development. Biometrical Journal, 53:708–709.

Englert, S. and Kieser, M. Optimal adaptive two-stage designs for phase II cancer clinical

trials. Biometrical Journal (under review).

Articles

Domschke, C., Diel, I., Englert, S., Kalteisen, S., Mayer, L., Rom, J., Sohn, C., and

Schuetz, F. (2013). Prognostic value of disseminated tumor cells in the bone marrow of

patients with operable primary breast cancer: A long-term follow up study. Annals of

Surgical Oncology, DOI 10.1245/s10434-012-2814-4.

Dobner, B. C., Riechardt, A. I., Joussen, A. M., Englert, S., and Bechrakis, N. E.

(2012). Expression of haematogenous and lymphogenous chemokine receptors and their

ligands on uveal melanoma in association with liver metastasis. Acta Ophthalmologica,

90:e638–e644.

Rahbari, N. N., Lordick, F., Fink, C., Bork, U., Stange, A., Jager, D., Luntz, S. P., En-

glert, S., Rossion, I., Koch, M., Büchler, M. W., Kieser, M., and Weitz, J. (2012).

Resection of the primary tumour versus no resection prior to systemic therapy in pa-

tients with colon cancer and synchronous unresectable metastases (UICC stage IV):

SYNCHRONOUS – A randomised controlled multicentre trial. BMC Cancer, 12:142.

Schwenk, M., Gogulla, S., Englert, S., Czempik, A., and Hauer, K. (2012). Test-retest

reliability and minimal detectable change of repeated sit-to-stand analysis using one

body fixed sensor in geriatric patients. Physiological Measurement, 33:1931–1946.

Krämer, N., Englert, S., Michel, R., Petschelt, A., and Frankenberger, R. (2011a). Zah-

ngesundheit bayerischer schulkinder. Bayerisches Zahnärzteblatt.

Krämer, N., Michel, R., Englert, S., Petschelt, A., and Frankenberger, R. (2011b).

Zahngesundheit bayerischer schulkinder 2009. Oralprophylaxe & Kinderzahnheilkunde,

34:74–82.



Curriculum Vitae V

Monographs

Falk, M., Marohn, F., Michel, R., Hofmann, D., Macke, M., Tewes, B., Dinges, P., Spach-

mann, C., and Englert, S. (2011). A First Course on Time Series Analysis : Examples

with SAS. Epubli GmbH, Berlin. 2012.august.01 edition. ISBN 978-3-8442-2845-8.

Ortseifen, C., Ramroth, H., Weires, M., and Minkenberg, R., editors (2011). Proceedings

der 15. Konferenz der SAS-Anwender in Forschung und Entwicklung (KSFE), KSFE

2011 – Voneinander Lernen. Shaker Verlag, Aachen. (book contribution) ISBN 978-3-

8440-0379-6.

Englert, S. (2009). Species richness estimation. Diplomarbeit, University of Würzburg.

URN urn:nbn:de:bvb:20-opus-71362.

Abstracts

Englert, S. and Kieser, M. An approach for unplanned sample size changes in one-armed

phase II cancer clinical trials. 3rd Joint Statistical Meeting DAGStat 2013. Freiburg

Englert, S. and Kieser, M. Evaluation of sample size adaptation rules in clinical studies

aiming at an overall performance optimization. Adaptive Designs And Multiple Testing

Procedures Workshop 2012. Heidelberg

Englert, S. Adaptive designs. 6. Herbsttagung der Deutschen Gesellschaft für Allgemein-

und Viszeralchirurgie 2012. Hamburg (Invited speaker)

Wirths, M., Englert, S. and Kieser, M. R Paket zur Planung und Auswertung einarmiger

onkologischer Phase-II-Studien (poster) 57. GMDS-Jahrestagung 2012. Braunschweig

Bruckner, T., Rochon, J. and Englert, S. Analysis of safety data using SAS (poster).

33rd Annual Meething of the Society for Clinical Trials, SCT 2012. Miami

Englert, S. and Kieser, M. Evaluation of sample size adaptation rules in clinical studies

aiming at an overall performance optimization. 58. Biometrisches Kolloquium 2012.

Berlin

Kieser, M., Englert, S. and Stucke, K. Innovative Methoden und Anwendungen zur

Fallzahlplanung für klinische Studien. 58. Biometrisches Kolloquium 2012. Berlin

Englert, S. “A First Course on Time Series Analysis with SAS” – an Open-Source Book

Project (poster). Time Series Workshop 2012. Karlsruhe

Englert, S. and Kieser, M. Verbesserung der Effizienz adaptiver Designs bei diskreten

Teststatistiken. 56. GMDS-Jahrestagung 2011. Mainz



VI Curriculum Vitae

Englert, S. and Kieser, M. Improving adaptive group sequential designs with discrete

outcomes. 2nd Conference of the Central European Network, CEN 2011. Zürich

Englert, S. and Kieser, M. Evaluating the efficiency of adaptive two-stage designs with

discrete test statistics. Adaptive Designs And Multiple Testing Procedures Workshop

2011. Lancaster

Englert, S. Empirische Poweranalysen. 15. Konferenz der SAS R© Anwender in Forschung

und Entwicklung, KSFE 2011. Heidelberg

Englert, S. and Kieser, M. Adaptive two-stage designs for single-arm trials with discrete

test statistics. Adaptive Designs And Multiple Testing Procedures Workshop 2010. Wien

Englert, S. and Kieser, M. Adaptive Designs für Phase-II-Studien in der Onkologie. 55.

GMDS-Jahrestagung 2010. Mannheim

Kieser, M. and Englert, S.. Adaptive designs for phase II studies in oncology. XXVth

International Biometric Conference (IBC) 2010. Florianápolis, Brasilien

Memberships

German Region of the International Biometric Society Since 01/2012

Society for Clinical Trials 05/2011 – 12/2012

Peer-Reviewer

Journal of Biopharmaceutical Statistics Since 07/2012

Pharmaceutical Statistics Since 05/2011

Statistics in Medicine Since 06/2010



Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Kieser

for his support throughout my PhD study and research. His guidance, motivation, en-

thusiasm, and expertise in adaptive and flexible designs helped me all the time during

research and writing of this thesis.

I thank the Deutsche Forschungsgemeinschaft (DFG) for supporting my research on flexible

designs for single-arm phase II trials in oncology by grant KI 708/1-1.

Last but not the least, I would like to thank my colleagues at the Institute of Medical

Biometry and Informatics, University of Heidelberg.


	List of Tables
	List of Figures
	List of Source Codes
	List of Abbreviations and Symbols
	Introduction
	Development of new therapies and role of phase II trials
	Aims and structure of the thesis

	Background
	Phase II trials in oncology
	Adaptive and flexible designs

	Drawbacks with Adaptive Designs Applied to Discrete Test Statistics
	Combination test method
	Conditional error function method

	Flexible Design Methods for Discrete Test Statistics
	Fixed two-stage design based on combination test approach
	Flexible two-stage design based on combination test approach
	Flexible two-stage design based on conditional error functions
	Construction of flexible and more efficient phase II designs

	Optimal Adaptive Designs for Phase II Trials in Oncology
	Modified discrete conditional error function methodology and search strategy
	Resulting optimal adaptive designs

	Evaluating the Performance of Flexible Phase II Designs
	Methodology for evaluating the efficiency of designs
	Framework for the comparison
	Performance comparison
	Properties compared and discussed

	Clinical Trial Example
	Discussion
	Contributions to research
	Limitations and directions for further research
	Conclusions

	Summary
	Source Codes and Technical Notes for Programmers
	Modified discrete conditional error function
	Sample size recalculation
	Branch-and-bound

	Additional Tables
	Simon's design
	Proposed design

	Bibliography
	Index
	Curriculum Vitae
	Acknowledgments

