Stochastik Approximationen der Binomialverteilung

Stefan Englert

stefan.englert@gmx.net

21. April 2007

Inhaltsverzeichnis

1	Approximation von $n!$ und $b_{n,p}(k)$	2
2	Der Satz von de Moivre-Laplace	6
3	Die Poisson-Approximation	8

Für großes n ist die exakte Berechnung der Wahrscheinlichkeit

$$b_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 (1)

mühsam.

Noch aufwendiger ist die Berechnung von Summen solcher Wahrscheinlichkeiten.

Deshalb verwendet man Approximationen der Binomialverteilung.

1 Approximation von n! und $b_{n,p}(k)$

Ziel: Approximationen für die in $\binom{n}{k} = n!/(k! - (n-k)!)$ mehrfach auftretenden Fakuläteten.

Definition Zwei Folgen (a_n) und (b_n) heißen asymptotisch gleich (oder asymptotisch äquivalent) für $n \to \infty$ wenn

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

ist. Wir schreiben dann:

$$a_n \sim b_n$$
.

Satz (Stirlingsche Formel) Ist

$$\eta_n := \sqrt{2\pi n} (n/e)^n = \sqrt{2\pi} e^{-n} n^{n+1/2},$$

so~gilt

$$n! \sim \eta_n$$
. eta

Beweis: Siehe Courant (1955), S. 317 - 319

Der Ausdruck für η_n besteht im Gegensatz zu n! nicht aus nverschiedenen Faktoren und ist daher leichter zu berechnen, wenn n groß ist. In der Approximation $\eta_n/(\eta_k \eta_{n-k})$ von $\binom{n}{k}$ ergibt sich zudem noch die Vereinfachung, dass e^{-n} im Zähler gegen $e^{-k} \cdot e^{-(n-k)}$ im Nenner gekürzt werden kann.

Beispiel: Die Wahrscheinlichkeit bei 2n Würfen einer Münze genau n-mal Kopf zu erhalten ist $\binom{2n}{n}2^{-2n}$. Als Approximation ergibt sich

$$\frac{\eta_{2n}}{\eta_n^2} 2^{-2n} = \frac{(2n)^{2n+1/2}}{\sqrt{2\pi} (n^{n+1/2})^2 2^{2n}} = \frac{1}{\sqrt{\pi n}}.$$

Bemerkung: $\eta_n \cdot exp(1/(12n))$ ist eine noch bessere Abschätzung von n!.

Der relative Fehler $(n! - \eta_n)/n!$ strebt sehr schnell gegen 0.

Bekanntermaßen ist die Dichte der Standard-Normalverteilung

$$\varphi(x) := \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$$

Satz (Lokaler Grenzwertsatz für die Binomialverteilung) Ist $0 und <math>(k_n)$ eine Folge mit $x(n,k_n)^3/\sqrt{n} \to 0$, so gilt

$$b_{n,p}(k_n) \sim \frac{1}{\sigma_n} \varphi(x(n,k_n)),$$
 (2)

wobei $\sigma_n = \sqrt{npq}$ die Standardabweichung der Binomialverteilung und $x(n, k_n) = \frac{k_n - np}{\sigma_n}$,

Beweis: Sei 0 und <math>q = 1 - p. Es liegt nahe, dass vor allem solche Werte k von Interesse sind, für die k/n ungefär p ist. Wir betrachten daher Folgen (k_n) mit $k_n/n \to p$, schreiben aber zur Abkürzung k statt k_n . Zusammen mit der Stirlingschen Formel gilt also

$$b_{n,p}(k) = \binom{n}{k} p^k q^{n-k}$$

$$\sim \frac{\eta_n}{\eta_k \eta_{n-k}} p^k q^{n-k}$$

$$\sim \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n}{k(n-k)}} \left(\frac{np}{k}\right)^k \left(\frac{np}{n-k}\right)^{n-k}.$$

Aus $k \sim np$ und $n - k \sim nq$ ergibt sich

$$\sqrt{\frac{n}{k(n-k)}} \sim \sqrt{\frac{1}{npq}} = \frac{1}{\sigma_n}.$$

Es genügt also nun, das Grenzverhalten von

chi
$$\chi(n,k) = \left(\frac{np}{k}\right)^k \left(\frac{np}{n-k}\right)^{n-k}$$

zu untersuchen. Sei t = k/n. t ist Abkürzung für $t_n = k_n/n$. Es gilt $t \to p$. Logarithmieren liefert:

$$-\log \chi(n,k) = n \left(t \log \frac{t}{p} + (1-t) \log \frac{1-t}{q} \right).$$

Die Funktion g(t) = (...) in der Klammer hat an der Stelle t = p den Wert g(p) = 0 und

$$g'(t) = -\log\left(\frac{1-t}{q}\right) + \log\left(\frac{t}{p}\right)$$
$$g''(t) = \frac{1}{1-t} + \frac{1}{t}$$

die Ableitung g'(p) = 0, g''(p) = 1/p + 1/q = 1/(pq). Nach der Taylorformel ist daher

$$g(t) = \frac{1}{2pq}(t-p)^2 + \psi(t-p),$$
 ps

wobei in einer Umgebung von t=p die Abschätzung $|\psi(t-p)| \le c |t-p|^3$ mit einer geeigneten Konstanten c>0 gilt.

Fordern wir nicht nur $t \to p$, sondern sogar $n(t-p)^3 \to 0$, so folgt $n \psi(t-p) \to 0$ und also

$$\left| -\log \chi(n,k) - \frac{n(t-p)^2}{2pq} \right| \to 0.$$

Setzt man

$$x(n,k) = \frac{k - np}{\sigma_n},$$

so ist

$$\frac{x(n,k)^2}{2} = \frac{(k-np)^2}{\sigma_n^2 \cdot 2} = \frac{1}{2npq}(nt-np)^2 = \frac{(t-p)^2 \cdot n}{2pq}$$

 $n(t-p)^2/(2pq) = x(n,k)^2/2$. Wir erhalten dann also

$$\log \chi(n,k) \to -\frac{n(t-p)^2}{2pq} = -\frac{x(n,k)^2}{2}$$

 $\chi(n,k) \to exp(-x(n,k)^2/2).$

Die Bedingung $n(t-p)^3 \to 0$ ist äquivalent zu der Bedingung

$$\frac{x(n,k)^3}{\sqrt{n}} \to 0. ag{3}$$

Insgesammt folgt also aus (3):

$$b_{n,p}(k) \sim \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left(-\frac{x(n,k)^2}{2}\right)$$
 (4)

Bemerkung: Sind (α_n) und (β_n) zwei Folgen mit

$$\frac{x(n,\alpha_n)^3}{\sqrt{n}} \to 0 \quad \text{und} \quad \frac{x(n,\beta_n)^3}{\sqrt{n}} \to 0, \tag{5}$$

so gilt die Konvergenz sogar gleichmäßig für alle Folgen (k_n) mit $\alpha_n \leq k_n \leq \beta_n$.

Tabelle 1 soll einen Eindruck von der Qualität der Approximation von $b_{n,p}(k)$ durch $\varphi(x(n,k_n))/\sigma_n$ vermitteln. Die Approximation ist gut, wenn σ_n nicht zu klein ist und $|k-np|/\sigma_n$ nicht zu groß. Bei p=0,2 oder p=0,8 braucht man also größere n als bei p=0,5. Außerdem ist für Werte von k in der Nähe von np (die am wahrscheinlichsten sind) die Approximation am besten.

	n = 8, p = 0.2		n = 8, p = 0.5		n = 25, p = 0.2	
k	Approx.	Exakt	Approx.	Exakt	Approx.	Exakt
0	0,130	0,168	0,005	0,004	0,009	0,004
1	0,306	0,336	0,030	0,031	$0,\!027$	0,024
2	0,331	0,294	$0,\!104$	0,109	$0,\!065$	0,071
3	$0,\!164$	0,147	0,220	0,219	$0,\!121$	0,136
4	0,037	0,046	0,282	0,273	$0,\!176$	0,187
5	0,004	0,009	0,220	0,219	$0,\!199$	0,196
6	0,000	0,001	$0,\!104$	0,109	$0,\!176$	0,163
7	0,000	0,000	0,030	0,031	$0,\!121$	0,111
8	0,000	0,000	0,005	0,004	$0,\!065$	0,062
9					$0,\!027$	0,029
10					0,009	0,012
11					0,002	0,004

Tabelle 1: Vergleich der Binomialverteilung mit ihrer Approximation

Stellt man die $b_{n,p}$ -Verteilung anschaulich dar, indem über jedem Intervall [k-1/2, k+1/2] auf der x-Achse ein Rechteck mit dem Flächeninhalt $b_{n,p}(k)$ gezeichnet wird, so werden für wachsendes n diese Schaubilder (**Histogramme**) immer flacher und die Schwerpunkte np wandern nach ∞ ab.

Man ändert daher zweckmäßig die Skalen und betrachtet x(n,k) statt k. Man zeichnet also über den Intervallen [x(n,k-1/2),x(n,k+1/2)] Rechtecke vom Flächeninhalt $b_{n,p}(k)$. Da deren Breite $1/\sigma_n$ ist, muss die Höhe $\sigma_n b_{n,p}(k)$ sein. Für großes n ist nach dem Lokalen Grenzwertsatz für die Binomialverteilung:

$$\sigma_n b_{n,p}(k) \approx \varphi(x(n,k))$$

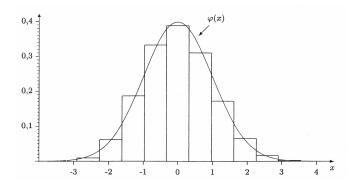


Abbildung 1: Binomialverteilung mit transformierter Skala für p = 0,4 n = 10 und die Approximation durch $\varphi(x)$

Die Histogramme für die x(n,k) werden für $n\to\infty$ der gaußschen Glockenkurve $\varphi(x)$ immer ähnlicher.

2 Der Satz von de Moivre-Laplace

Ziel: Approximation von Summen von Wahrscheinlichkeiten $b_{n,p}(k)$ für großes n.

Wir benötigen dazu die durch

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t) \ dt$$

definierte Verteilungsfunktion Φ der Standard-Normalverteilung.

$$\int_{a}^{b} \varphi(t) dt = \Phi(b) - \Phi(a) \qquad Phi$$

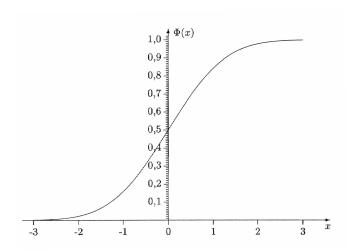


Abbildung 2: Verteilungsfunktion der Standard-Normalverteilung

Definition Sei S_n eine $b_{n,p}$ -verteilte Zufallsvariable, dann heißt

$$S_n^* = \frac{S_n - np}{\sigma_n} = \frac{S_n - ES_n}{\sqrt{Var(S_n)}}.$$

die standardisierte oder normierte Form von S_n .

Bemerkung: S_n^* hat Erwartungswert 0 und Varianz 1. Nimmt S_n den Wert k an, so hat S_n^* den Wert x(n,k).

Satz (Satz von de Moivre-Laplace) Sei $0 , und <math>S_n$ $b_{n,p}$ -verteilt. Dann gilt für alle a < b

$$\lim_{n \to \infty} P(a \le S_n^* \le b) = \Phi(b) - \Phi(a)$$

Beweis: Offenbar ist $a \leq S_n^* \leq b$ äquivalent zu $a\sigma_n + np \leq S_n \leq b\sigma_n + np$. Sei α_n die kleinste ganze Zahl $\geq a\sigma_n + np$ und β_n die größte ganze Zahl $\leq b\sigma_n + np$. Dann ist

$$\{a \le S_n^* \le b\} = \{\alpha_n \le S_n \le \beta_n\}.$$

$$|x(n, \alpha_n) - a| = \left| \frac{\alpha_n - np - \sigma_n a}{\sigma_n} \right|^{da \ kleinste \ ganze \ Zahl} \le \frac{1}{\sigma_n}$$

Wegen $|x(n,\alpha_n)-a| \leq \frac{1}{\sigma_n}$ und $|x(n,\beta_n)-a| \leq \frac{1}{\sigma_n}$ sind die Folgen $(x(n,\alpha_n))$ und $(x(n,\beta_n))$ beschränkt, so dass (5) gilt. Aus dem lokalen Grenzwertsatz der Binomialverteilung folgt daher die Existenz einer Folge $\epsilon_n \to 0$ mit

$$1 - \epsilon_n < \frac{b_{n,p}(k)}{\varphi(x(n,k))/\sigma_n} < 1 + \epsilon_n$$

für $\alpha_n \leq k \leq \beta_n$. Setzt man

$$R_n = \sum_{k=\alpha_n}^{\beta_n} \frac{1}{\sigma_n} \varphi(x(n,k)).$$

so gilt also

$$(1 - \epsilon_n)R_n \le \sum_{k=\alpha_n}^{\beta_n} (1 - \epsilon_n) \frac{1}{\sigma_n} \varphi(x(n, k)) \le \sum_{k=\alpha_n}^{\beta_n} b_{n, p}(k) \le P(\alpha_n \le S_n \le \beta_n)$$

$$(1 - \epsilon_n)R_n \le P(a \le S_n^* \le b) \le (1 + \epsilon_n)R_n \tag{6}$$

Die x(n,k) sind die Mittelpunkte von Intervallen der Länge $1/\sigma_n$, in die das Intervall $[x(n,\alpha_n-1/2),x(n,\beta_n+1/2)]$ unterteilt ist. Also ist R_n eine Riemann-Summe, die das Integral

$$\int_{x(n,\alpha_n-1/2)}^{x(n,\beta_n+1/2)} \varphi(x)dx = \Phi(x(n,\beta_n+1/2)) - \Phi(x(n,\alpha_n-1/2))$$
 (7)

approximiert. Für $n \to \infty$ gilt $x(n, \alpha_n - 1/2) \to a, x(n, \beta_n + 1/2) \to b$ und also $R_n \to \Phi(b) - \Phi(a)$. Aus (6) folgt daher die Behauptung.

Bemerkung: Der Ausdruck in (7) strebt zwar gegen $\Phi(b) - \Phi(a)$, aber selbst für große n ist er noch eine bessere Approximation für $P(\alpha_n \leq S_n \leq \beta_n)$ als $\Phi(b) - \Phi(a)$.

Praktisch werden die obigen Ergebnisse z.B. folgendermaßen angewandt: Will man für bestimmte $\alpha < \beta$ und nicht zu kleines n die Wahrscheinlichkeit $P(\alpha \leq S_n \leq \beta)$ abschätzen, so rechnet man um:

$$P(\alpha \le S_n \le \beta) = P\left(\frac{\alpha - np}{\sigma_n} \le S_n^* \le \frac{\beta - np}{\sigma_n}\right),$$

und gibt $\Phi((\beta - np)/\sigma_n) - \Phi((\alpha - np)/\sigma_n)$ als approximativen Wert der gesuchten Wahrscheinlichkeit an.

Gemäß der Bemerkung liefert

$$\Phi\left(\frac{\beta - np + 1/2}{\sigma_n}\right) - \Phi\left(\frac{\alpha - np - 1/2}{\sigma_n}\right)$$

eine noch bessere Approximation.

3 Die Poisson-Approximation

Ziel: Approximation der Binomialverteilung für kleine Erfolgswahrscheinlichkeiten.

Satz Sind X und Y unabhänige Zufallsvariablen mit ganzzahligen Werten, so ist

$$P(X + Y = k) = \sum_{i} P(X = i) P(Y = k - i).$$

Eine derartige Verteilung nennt man auch Faltung der Verteilung von X mit der von Y, wenn X und Y unabhängig sind.

Beweis: Es ist

$$\begin{split} P(X+Y=k) &= \sum_{i} P(X=i,X+Y=k) \\ &= \sum_{i} P(X=i,Y=k-i) \\ &= \sum_{i} P(X=i) \ P(Y=k-i). \end{split}$$

Definition Eine Zufallsvariable X heißt **Poisson-verteilt** mit Parameter $\lambda \geq 0$ (kurz: $P(\lambda)$ -verteilt), wenn

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad (k = 0, 1, \dots)$$

gilt.

Lemma Sind X_1 , X_2 unabhängig und ist X_i $P(\lambda_i)$ -verteilt, so ist die Zufallsvariable $X_1 + X_2$ $P(\lambda_1 + \lambda_2)$ verteilt.

Beweis: In $\sum_i P(X_1=i)P(X_2=k-i)$ sind nur die Terme mit $i\geq 0$ von Null verschieden, da X_1 und X_2 nur nichtnegative Werte annehmen. Also ist

$$P(X_1 + X_2 = k) = \sum_{i=0}^{k} P(X_1 = i) P(X_2 = k - i)$$

$$= \sum_{i=0}^{k} e^{-\lambda_1} \frac{\lambda_1^i}{i!} \cdot e^{-\lambda_2} \frac{\lambda_2^{k-i}}{(k-i)!} \cdot \frac{k!}{k!}$$

$$= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \sum_{i=0}^{k} \binom{k}{i} \lambda_1^i \lambda_2^{k-i}$$

$$= e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^k}{k!}.$$

Satz X_1, \ldots, X_n seien unabhängige Zufallsvariablen mit $P(X_i = 1) = p_i$ und $P(X_i = 0) = 1 - p_i$. Sei $S = X_1 + \cdots + X_n$ und $\lambda = p_1 + \cdots + p_n$. Dann gilt

$$\sum_{k=0}^{\infty} \left| P(S=k) - e^{-\lambda} \frac{\lambda^k}{k!} \right| \le 2 \sum_{i=1}^n p_i^2.$$
 (8)

Beweis: Es ist für die Berechnung der Verteilung von S egal auf welchem Wahrscheinlichkeitsraum die Zufallsvariablen definiert sind. Also können wir uns einen aussuchen, der für den Beweis vorteilhaft ist.

Wir setzen $\Omega_i = \{-1, 0, 1, 2 \dots\}$, $P_i(0) = 1 - p_i$, $P_i(-1) = e^{-p_i} - (1 - p_i)$ und $P_i(k) = e^{-p_i} p_i^k / k!$ für $k \in \mathbb{N}$. Sei $\Omega = \Omega_1 \times \dots \times \Omega_n$ und $P = P_1 \times \dots \times P_n$, d.h. für $\omega = (\omega_1, \omega_2, \dots, \omega_n) \in \Omega$ sei

$$P(\omega) = P_1(\omega_1)P_2(\omega_2)\dots P_n(\omega_n).$$

Wir setzen

$$X_i(\omega) = \begin{cases} 0, & \text{falls} \quad \omega_i = 0 \\ 1, & \text{sonst}, \end{cases} \quad Y_i(\omega) = \begin{cases} k, & \text{falls} \quad \omega_i = k \ge 1 \\ 0, & \text{sonst}. \end{cases}$$

Dann haben die X_i die geforderte Verteilung.

$$P(X_i(\omega) = 0) = P(\{\omega_i = 0\}) = P_i(\{\omega_i = 0\}) = 1 - p_i$$

$$P(X_i(\omega) = 1) = P_i(\{\omega_i = \{-1, 1, 2, \dots\}\}) = e^{-p_i} - (1 - p_i) + \sum_{k=1}^{\infty} e^{-p_i} \frac{p_i^k}{k!} = p_i$$

Die Y_i sind unabhängig und $P(\lambda_i)$ -verteilt. Es ist

$$P(X_i = Y_i) = P_i(0) + P_i(1) = 1 - p_i + e^{-p_i} p_i$$

Daher ist

$$P(X_i \neq Y_i) = p_i - e^{-p_i} \ p_i = p_i (1 - e^{-p_i}) < p_i^2$$

Nach dem vorherigen Lemma ist $T = Y_1 + \cdots + Y_n$ $P(\lambda)$ -verteilt. Die abzuschätzende Summe in (8) lässt sich nun schreiben als

$$\sum_{k=0}^{\infty} |P(S=k) - P(T=k)|$$

$$= \sum_{k=0}^{\infty} |P(S=k, T=k) + P(S=k, T \neq k) - P(T=k, S=k) - P(T=k, S \neq k)|$$

$$\leq \sum_{k=0}^{\infty} (P(S=k, T \neq k) + P(T=k, S \neq k))$$

$$= 2 P(S \neq T)$$

$$\leq 2 \sum_{i=0}^{n} P(X_i \neq Y_i) \leq 2 \sum_{i=1}^{n} p_i^2.$$

Folgerung Ist p(n) eine Folge mit $0 \le p(n) \le 1$ und n $p(n) \to \lambda$, so gilt

$$b_{n,p(n)}(k) = \binom{n}{k} p(n)^k (1 - p(n))^{n-k} \to e^{-\lambda} \frac{\lambda^k}{k!}.$$

Beweis: Man setzt $p_i = p(n)$ (i = 1, ..., n). Dann ist $P(S = k) = b_{n,p(n)}(k)$, und es gilt

$$2\sum_{i=1}^{n} p(n)^{2} = 2 p(n)^{2} \cdot n = 2 p(n) \cdot n p(n) \to 0.$$

Bemerkung: Die Folgerung lässt sich wie in der Übung gezeigt wurde auch direkt beweisen.

Aus der Tabelle 2 ergibt sich ein Bild von der Güte der Approximation, wenn die p_i alle gleich p sind, und $np = \lambda = 1$ gilt.

k	p(k 1)	$b_{100, 1/100}(k)$	$b_{10, 1/10}(k)$
0	0,367	$0,\!366$	$0,\!349$
1	0,367	$0,\!369$	$0,\!387$
2	0,184	0,184	$0,\!194$
3	0,061	$0,\!061$	$0,\!057$

Tabelle 2: Vergleich Poisson-Verteilung / Binomialverteilung

In der praktischen Anwendung verwendet man die Poisson-Verteilung als Modell überall dort, wo gezählt wird wie viele von vielen möglichen, aber einzeln relativ unwahrscheinlichen unabhängigen Ereignissen eintreten.